INSA Rennes, 4GM-AROM
 Random Models of Dynamical Systems Introduction to SDE's TD 2: Some applications of the Itô formula

November 28, 2018

Exercise 1 [Integration by parts] Let $B(t)$ be a d-dimensional standard Brownian motion, and let $X_{1}(t)$ and $X_{2}(t)$ be two one-dimensional Itô processes, with

$$
X_{i}(t)=X_{i}(0)+\int_{0}^{t} \psi_{i}(s) d s+\int_{0}^{t} \phi_{i}(s) d B(s) \quad \text { for } i=1,2
$$

Here $\phi_{1}(s)$ and $\phi_{2}(s)$ are two $1 \times d$ matrices (row vectors).
(i) Write the Itof formula for the one-dimensional process $X_{1}(t) X_{2}(t)$.
\qquad Solution \qquad
The two-dimensional process $X(t)=\left(X_{1}(t), X_{2}(t)\right)$ is an Itô process, with

$$
\psi(s)=\binom{\psi_{1}(s)}{\psi_{2}(s)} \quad \text { and } \quad \phi(s)=\binom{\phi_{1}(s)}{\phi_{2}(s)}
$$

The Itô formula for the Itô process $X(t)$ and for the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, with

$$
f^{\prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right) \quad \text { and } \quad f^{\prime \prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

yields

$$
\begin{aligned}
& X_{1}(t) X_{2}(t)= X_{1}(0) X_{2}(0)+\int_{0}^{t}\left(X_{2}(s) \quad X_{1}(s)\right)\left[\binom{\psi_{1}(s)}{\psi_{2}(s)} d s+\binom{\phi_{1}(s)}{\phi_{2}(s)} d B(s)\right] \\
&+\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\phi_{1}(s) \phi_{1}^{*}(s) & \phi_{1}(s) \phi_{2}^{*}(s) \\
\phi_{2}(s) \phi_{1}^{*}(s) & \phi_{2}(s) \phi_{2}^{*}(s)
\end{array}\right)\right] d s \\
&=X_{1}(0) X_{2}(0)+\int_{0}^{t}\left(X_{2}(s) \psi_{1}(s)+X_{1}(s) \psi_{2}(s)\right) d s \\
&+\int_{0}^{t}\left(X_{2}(s) \phi_{1}(s)+X_{1}(s) \phi_{2}(s)\right) d B(s) \\
&+\frac{1}{2} \int_{0}^{t}\left(\phi_{1}(s) \phi_{2}^{*}(s)+\phi_{2}(s) \phi_{1}^{*}(s)\right) d s
\end{aligned}
$$

or in other words

$$
\begin{aligned}
X_{1}(t) X_{2}(t)=X_{1}(0) & X_{2}(0)+\int_{0}^{t} X_{2}(s) d X_{1}(s)+\int_{0}^{t} X_{1}(s) d X_{2}(s) \\
& +\frac{1}{2} \int_{0}^{t}\left(\phi_{1}(s) \phi_{2}^{*}(s)+\phi_{2}(s) \phi_{1}^{*}(s)\right) d s
\end{aligned}
$$

Multi-dimensional version: Let $B(t)$ be a d-dimensional standard Brownian motion, and let $X_{1}(t)$ and $X_{2}(t)$ be two m-dimensional Itô processes, with

$$
X_{i}(t)=X_{i}(0)+\int_{0}^{t} \psi_{i}(s) d s+\int_{0}^{t} \phi_{i}(s) d B(s) \quad \text { for } i=1,2
$$

Here $\psi_{1}(s)$ and $\psi_{2}(s)$ are two m-dimensional vectors, and $\phi_{1}(s)$ and $\phi_{2}(s)$ are two $m \times d$ matrices.
(ii) Write the Ito formula for the one-dimensional process $X_{1}^{*}(t) X_{2}(t)$ and for the $m \times m$ matrix-valued process $X_{1}(t) X_{2}^{*}(t)$.
[Hint: for the second part, apply the result obtained at question (i) to the two one-dimensional Itô processes $u_{1}^{*} X_{1}(t)$ and $u_{2}^{*} X_{2}(t)$ where u_{1} and u_{2} are two arbitrary vectors in \mathbb{R}^{m}.]
\qquad Solution \qquad
First part (scalar product): The $2 m$-dimensional process $X(t)=\left(X_{1}(t), X_{2}(t)\right)$ is an Itô process, with

$$
\psi(s)=\binom{\psi_{1}(s)}{\psi_{2}(s)} \quad \text { and } \quad \phi(s)=\binom{\phi_{1}(s)}{\phi_{2}(s)}
$$

The Itô formula for the Itô process $X(t)$ and for the function $f\left(x_{1}, x_{2}\right)=x_{1}^{*} x_{2}$, with

$$
f^{\prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
x_{2}^{*} & x_{1}^{*}
\end{array}\right) \quad \text { and } \quad f^{\prime \prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)
$$

yields

$$
\begin{aligned}
& X_{1}(t) X_{2}^{*}(t)= X_{1}^{*}(0) X_{2}(0)+\int_{0}^{t}\left(X_{2}^{*}(s) \quad X_{1}^{*}(s)\right)\left[\binom{\psi_{1}(s)}{\psi_{2}(s)} d s+\binom{\phi_{1}(s)}{\phi_{2}(s)} d B(s)\right] \\
&+\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left[\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
\phi_{1}(s) \phi_{1}^{*}(s) & \phi_{1}(s) \phi_{2}^{*}(s) \\
\phi_{2}(s) \phi_{1}^{*}(s) & \phi_{2}(s) \phi_{2}^{*}(s)
\end{array}\right)\right] d s \\
&=X_{1}^{*}(0) X_{2}(0)+\int_{0}^{t}\left(X_{2}^{*}(s) \psi_{1}(s)+X_{1}^{*}(s) \psi_{2}(s)\right) d s \\
&+\int_{0}^{t}\left(X_{2}^{*}(s) \phi_{1}(s)+X_{1}^{*}(s) \phi_{2}(s)\right) d B(s) \\
&+\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left[\phi_{1}(s) \phi_{2}^{*}(s)+\phi_{2}(s) \phi_{1}^{*}(s)\right] d s
\end{aligned}
$$

or in other words

$$
\begin{aligned}
X_{1}^{*}(t) X_{2}(t)=X_{1}^{*}(0) & X_{2}(0)+\int_{0}^{t} X_{2}^{*}(s) d X_{1}(s)+\int_{0}^{t} X_{1}^{*}(s) d X_{2}(s) \\
& +\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left[\phi_{1}(s) \phi_{2}^{*}(s)+\phi_{2}(s) \phi_{1}^{*}(s)\right] d s
\end{aligned}
$$

Second part: If u_{1} and u_{2} are m-dimensional vectors, then $u_{1}^{*} X_{1}(t)$ and $u_{2}^{*} X_{2}(t)$ are two onedimensional Itô processes, with

$$
u_{i}^{*} X_{i}(t)=u_{i}^{*} X_{i}(0)+\int_{0}^{t} u_{i}^{*} \psi_{i}(s) d s+\int_{0}^{t} u_{i}^{*} \phi_{i}(s) d B(s) \quad \text { for } i=1,2
$$

Here $u_{1}^{*} \phi_{1}(s)$ and $u_{1}^{*} \phi_{2}(s)$ are two $1 \times d$ matrices (row vectors). Applying the result obtained at question (i) yields

$$
\begin{gathered}
u_{1}^{*} X_{1}(t) u_{2}^{*} X_{2}(t)=u_{1}^{*} X_{1}(0) u_{2}^{*} X_{2}(0)+\int_{0}^{t} u_{2}^{*} X_{2}(s) d\left[u_{1}^{*} X_{1}(s)\right]+\int_{0}^{t} u_{1}^{*} X_{1}(s) d\left[u_{2}^{*} X_{2}(s)\right] \\
+\frac{1}{2} \int_{0}^{t}\left[u_{1}^{*} \phi_{1}(s) u_{2}^{*} \phi_{2}^{*}(s)+u_{2}^{*} \phi_{2}(s) u_{1}^{*} \phi_{1}^{*}(s)\right] d s
\end{gathered}
$$

or equivalently, after rearranging terms

$$
\begin{gathered}
u_{1}^{*} X_{1}(t) X_{2}^{*}(t) u_{2}=u_{1}^{*} X_{1}(0) X_{2}^{*}(0) u_{2}+\int_{0}^{t} u_{1}^{*} d X_{1}(s) X_{2}^{*}(s) u_{2}+\int_{0}^{t} u_{1}^{*} X_{1}(s) d X_{2}^{*}(s) u_{2} \\
+\int_{0}^{t} u_{1}^{*} \phi_{1}(s) \phi_{2}^{*}(s) u_{2} d s
\end{gathered}
$$

or in other words

$$
\begin{aligned}
X_{1}(t) X_{2}^{*}(t)=X_{1}(0) & X_{2}^{*}(0)+\int_{0}^{t} d X_{1}(s) X_{2}^{*}(s)+\int_{0}^{t} X_{1}(s) d X_{2}^{*}(s) \\
& +\int_{0}^{t} \phi_{1}(s) \phi_{2}^{*}(s) d s
\end{aligned}
$$

since the vectors u_{1} and u_{2} are arbitrary.

Problem 2 [Burkholder-Davis-Gundy inequalities] Let B be a one-dimensional standard Brownian motion, and for any $\phi \in M^{2}([0, T])$ define

$$
M(t)=\int_{0}^{t} \phi(s) d B(s), \quad M_{*}(t)=\max _{0 \leq s \leq t}|M(s)|, \quad A(t)=\int_{0}^{t}|\phi(s)|^{2} d s
$$

The objective is to show that for any $p \geq 2$, there exist positive constants $0<c_{p} \leq C_{p}<\infty$ such that for any $0 \leq t \leq T$

$$
c_{p} \mathbb{E}|A(t)|^{p / 2} \leq \mathbb{E}\left|M_{*}(t)\right|^{p} \leq C_{p} \mathbb{E}|A(t)|^{p / 2},
$$

i.e. the moments of a martingale can be controlled in terms of the moments of its increasing process.
(i) Show that the upper bound holds for $p=2$.
[Hint: use the Doob inequality.]
\qquad
The Doob inequality for $p=2$ provides a uniform control in terms of the terminal value

$$
\mathbb{E}\left[\max _{0 \leq s \leq t}|M(s)|^{2}\right] \leq 4 \mathbb{E}|M(t)|^{2},
$$

and the Itô isometry yields

$$
\mathbb{E}|M(t)|^{2}=\mathbb{E} \int_{0}^{t}|\phi(s)|^{2} d s=\mathbb{E}[A(t)]
$$

Combining the two estimates provide a uniform control in terms of the increasing process, i.e.

$$
\mathbb{E}\left[\max _{0 \leq s \leq t}|M(s)|^{2}\right] \leq 4 \mathbb{E}[A(t)]
$$

The following boundedness assumption will be used:
there exists a positive $K>0$ such that $A(T) \leq K^{2}$ and $|M(t)| \leq K$ for any $0 \leq t \leq T$.
(ii) Assume that the result holds under the boundedness assumption. Show that the result can be extended to the general case.
[Hint: for any $n \geq 1$, consider the stopping time

$$
\tau_{n}=\inf \{0 \leq t \leq T:|M(t)| \geq n \text { or } A(t) \geq n\} \quad \text { or } \quad \tau_{n}=T,
$$

and the stopped martingale defined by $M^{n}(t)=M\left(t \wedge \tau_{n}\right)$ for any $0 \leq t \leq T$.]
From now on, the boundedness assumption is made.
Upper bound:
(iii) Show that the p-th order moment $\mathbb{E}\left|M_{*}(t)\right|^{p}$ can be bounded in terms of $\mathbb{E}|M(t)|^{p}$.
[Hint: use the Doob inequality.]
\qquad
It follows from the Doob inequality that

$$
\left\{\mathbb{E}\left[\max _{0 \leq s \leq t}|M(s)|^{p}\right]\right\}^{1 / p} \leq \frac{p}{p-1}\left\{\mathbb{E}|M(t)|^{p}\right\}^{1 / p},
$$

or in other words

$$
\mathbb{E}\left|M_{*}(t)\right|^{p}=\mathbb{E}\left[\max _{0 \leq s \leq t}|M(s)|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}|M(t)|^{p}
$$

(iv) Write the Itô formula for $|M(t)|^{p}$. Show that the p-th order moment $\mathbb{E}|M(t)|^{p}$ can be bounded in terms of $\mathbb{E}\left[\left|M_{*}(t)\right|^{p-2} A(t)\right]$, and further bounded in terms of $\mathbb{E}\left|M_{*}(t)\right|^{p}$ and $\mathbb{E}|A(t)|^{p / 2}$.
[Hint: for the last part, use the Hölder inequality.]
\qquad Solution
The Itô formula for the Itô process

$$
M(t)=\int_{0}^{t} \phi(s) d B(s)
$$

and for the function $g(x)=|x|^{p}$, with

$$
\left.f^{\prime} x\right)=p|x|^{p-1} \operatorname{sign}(x) \quad \text { and } \quad f^{\prime \prime}(x)=p(p-1)|x|^{p-2},
$$

yields

$$
|M(t)|^{p}=p \int_{0}^{t}|M(s)|^{p-1} \operatorname{sign}(M(s)) \phi(s) d B(s)+\frac{1}{2} p(p-1) \int_{0}^{t}|M(s)|^{p-2}|\phi(s)|^{2} d s
$$

Under the boundedness assumption, the integrand $s \mapsto|M(s)|^{p-1} \operatorname{sign}(M(s)) \phi(s)$ belongs to $M^{2}([0, T])$, since

$$
\mathbb{E} \int_{0}^{T} \|\left.\left. M(s)\right|^{p-1} \operatorname{sign}(M(s)) \phi(s)\right|^{2} d s \leq K^{2 p-2} \mathbb{E} \int_{0}^{T}|\phi(s)|^{2} d s \leq K^{2 p}<\infty
$$

and therefore the stochastic integral is a martingale and its expectation is zero. Taking expectation yields

$$
\begin{aligned}
\mathbb{E}|M(t)|^{p} & =\frac{1}{2} p(p-1) \mathbb{E}\left[\int_{0}^{t}|M(s)|^{p-2}|\phi(s)|^{2} d s\right] \\
& \leq \frac{1}{2} p(p-1) \mathbb{E}\left[\max _{0 \leq s \leq t}|M(s)|^{p-2} \int_{0}^{t}|\phi(s)|^{2} d s\right] \\
& =\frac{1}{2} p(p-1) \mathbb{E}\left[\left|M_{*}(t)\right|^{p-2} A(t)\right] .
\end{aligned}
$$

The Hölder inequality for conjugate exponents $q=p /(p-2)$ and $q^{\prime}=\frac{1}{2} p$ yields

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{*}(t)\right|^{p-2} A(t)\right] & \leq\left\{\mathbb{E}\left|M_{*}(t)\right|^{q(p-2)}\right\}^{1 / q}\left\{\mathbb{E}|A(t)|^{q^{\prime}}\right\}^{1 / q^{\prime}} \\
& =\left\{\mathbb{E}\left|M_{*}(t)\right|^{p}\right\}^{1-2 / p}\left\{\mathbb{E}|A(t)|^{p / 2}\right\}^{2 / p},
\end{aligned}
$$

hence

$$
\mathbb{E}|M(t)|^{p} \leq \frac{1}{2} p(p-1)\left\{\mathbb{E}\left|M_{*}(t)\right|^{p}\right\}^{1-2 / p}\left\{\mathbb{E}|A(t)|^{p / 2}\right\}^{2 / p} .
$$

Reporting this inequality in the inequality obtained in question (iii) yields

$$
\begin{aligned}
\mathbb{E}\left|M_{*}(t)\right|^{p} & \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}|M(t)|^{p} \\
& \leq\left(\frac{p}{p-1}\right)^{p} \frac{1}{2} p(p-1)\left\{\mathbb{E}\left|M_{*}(t)\right|^{p}\right\}^{1-2 / p}\left\{\mathbb{E}|A(t)|^{p / 2}\right\}^{2 / p},
\end{aligned}
$$

and collecting all $\mathbb{E}\left|M_{*}(t)\right|^{p}$ terms in the left-hand side yields

$$
\left\{\mathbb{E}\left|M_{*}(t)\right|^{p}\right\}^{2 / p} \leq\left(\frac{p}{p-1}\right)^{p} \frac{1}{2} p(p-1)\left\{\mathbb{E}|A(t)|^{p / 2}\right\}^{2 / p},
$$

or equivalently

$$
\mathbb{E}\left|M_{*}(t)\right|^{p} \leq\left[\left(\frac{p}{p-1}\right)^{p} \frac{1}{2} p(p-1)\right]^{p / 2} \mathbb{E}|A(t)|^{p / 2}
$$

Lower bound: Define

$$
Y(t)=\int_{0}^{t}|A(s)|^{(p-1) / 2} \phi(s) d B(s) .
$$

(v) Show that $E|Y(t)|^{2}=\frac{1}{p} \mathbb{E}|A(t)|^{p}$.
\qquad Solution \qquad
Under the boundedness assumption, the integrand $s \mapsto|A(s)|^{(p-1) / 2} \phi(s)$ belongs to $M^{2}([0, T])$, since

$$
\mathbb{E} \int_{0}^{T}|A(s)|^{p-1}|\phi(s)|^{2} d s \leq K^{2 p-2} \mathbb{E} \int_{0}^{T}|\phi(s)|^{2} d s \leq K^{2 p}<\infty
$$

and the Itô isometry yields

$$
\mathbb{E}|Y(t)|^{2}=\mathbb{E} \int_{0}^{T}|A(s)|^{p-1}|\phi(s)|^{2} d s
$$

On the other hand, the usual chain rule yields

$$
\frac{d}{d t}|A(t)|^{p}=p|A(t)|^{p-1}|\phi(t)|^{2}
$$

or, in integrated form

$$
|A(t)|^{p}=p \int_{0}^{t}|A(s)|^{p-1}|\phi(s)|^{2} d s
$$

Taking expectation yields

$$
\mathbb{E}|A(t)|^{p}=p \mathbb{E} \int_{0}^{t}|A(t)|^{p-1}|\phi(s)|^{2} d s=p \mathbb{E}|Y(t)|^{2}
$$

(vi) Using the Itô formula for $M(t)|A(t)|^{(p-1) / 2}$, get an alternate expression for $Y(t)$ and show the bound $|Y(t)| \leq 2 M_{*}(t)|A(t)|^{(p-1) / 2}$. Show that the p-th order moment $\mathbb{E}|A(t)|^{p}$ can be bounded in terms of $\mathbb{E}\left|M_{*}(t)\right|^{2 p}$ and $\mathbb{E}|A(t)|^{p}$.
[Hint: for the last part, use the Hölder inequality.]
\qquad
Note that the usual chain rule yields

$$
\frac{d}{d t}|A(t)|^{(p-1) / 2}=\frac{1}{2}(p-1)|A(t)|^{(p-3) / 2}|\phi(t)|^{2}
$$

or, in integrated form

$$
|A(t)|^{(p-1) / 2}=\frac{1}{2}(p-1) \int_{0}^{t}|A(s)|^{(p-3) / 2}|\phi(s)|^{2} d s
$$

The Itô formula (integration by parts) for the two component Itô process

$$
\binom{M(t)}{|A(t)|^{(p-1) / 2}}=\frac{1}{2}(p-1) \int_{0}^{t}\binom{0}{|A(s)|^{(p-3) / 2}|\phi(s)|^{2}} d s+\int_{0}^{t}\binom{\phi(s)}{0} d B(s)
$$

yields

$$
\begin{aligned}
M(t)|A(t)|^{(p-1) / 2}=\frac{1}{2}(p-1) & \int_{0}^{t} M(s)|A(s)|^{(p-3) / 2}|\phi(s)|^{2} d s \\
& +\int_{0}^{t}|A(s)|^{(p-1) / 2} \phi(s) d B(s),
\end{aligned}
$$

hence

$$
\begin{aligned}
Y(t) & =\int_{0}^{t}|A(s)|^{(p-1) / 2} \phi(s) d B(s) \\
& =M(t)|A(t)|^{(p-1) / 2}-\frac{1}{2}(p-1) \int_{0}^{t} M(s)|A(s)|^{(p-3) / 2}|\phi(s)|^{2} d s
\end{aligned}
$$

Note that

$$
\left.|M(t)| A(t)\right|^{(p-1) / 2} \leq M_{*}(t)|A(t)|^{(p-1) / 2}
$$

and

$$
\begin{aligned}
\left.\left.\left|\frac{1}{2}(p-1) \int_{0}^{t} M(s)\right| A(s)\right|^{(p-3) / 2}|\phi(s)|^{2} d s \right\rvert\, & \leq M_{*}(t) \frac{1}{2}(p-1) \int_{0}^{t}|A(s)|^{(p-3) / 2}|\phi(s)|^{2} d s \\
& \leq M_{*}(t)|A(t)|^{(p-1) / 2}
\end{aligned}
$$

and the triangle inequality yields

$$
|Y(t)| \leq 2 M_{*}(t)|A(t)|^{(p-1) / 2}
$$

Therefore

$$
\mathbb{E}|A(t)|^{p}=p \mathbb{E}|Y(t)|^{2} \leq 4 p \mathbb{E}\left[\left|M_{*}(t)\right|^{2}|A(t)|^{p-1}\right]
$$

The Hölder inequality for conjugate exponents $q=p /(p-1)$ and $q^{\prime}=p$ yields

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{*}(t)\right|^{2}|A(t)|^{p-1}\right] & \leq\left\{\mathbb{E}\left|M_{*}(t)\right|^{\left.2 q^{\prime}\right)}\right\}^{1 / q^{\prime}}\left\{\mathbb{E}|A(t)|^{q(p-1)}\right\}^{1 / q} \\
& =\left\{\mathbb{E}\left|M_{*}(t)\right|^{2 p}\right\}^{1 / p}\left\{\mathbb{E}|A(t)|^{p}\right\}^{1-1 / p},
\end{aligned}
$$

hence

$$
\mathbb{E}|A(t)|^{p} \leq 4 p\left\{\mathbb{E}\left|M_{*}(t)\right|^{2 p}\right\}^{1 / p}\left\{\mathbb{E}|A(t)|^{p}\right\}^{1-1 / p},
$$

and collecting all $\mathbb{E}|A(t)|^{p}$ terms in the left-hand side yields

$$
\left\{\mathbb{E}|A(t)|^{p}\right\}^{1 / p} \leq 4 p\left\{\mathbb{E}\left|M_{*}(t)\right|^{2 p}\right\}^{1 / p},
$$

or equivalently

$$
\mathbb{E}|A(t)|^{p} \leq(4 p)^{p} \mathbb{E}\left|M_{*}(t)\right|^{2 p} .
$$

Exercice 3 [Exponential bound] Let B be a one-dimensional standard Brownian motion, and for any $\phi \in M^{2}([0, T])$ define

$$
M(t)=\int_{0}^{t} \phi(s) d B(s), \quad A(t)=\int_{0}^{t}|\phi(s)|^{2} d s
$$

For any positive $\lambda>0$ define

$$
Z^{\lambda}(t)=\exp \left\{\lambda M(t)-\frac{1}{2} \lambda^{2} A(t)\right\} .
$$

In the special case where $\phi \equiv 1$, the process M is a Brownian motion, and the process Z^{λ} is a martingale. This was shown using the expression of the Laplace transform of a Gaussian r.v. and this trick cannot be used in the general case.
(i) Write the Ito formula for $Z^{\lambda}(t)$, show that it is a (local) martingale, hence $\mathbb{E}\left[Z^{\lambda}(t)\right] \leq 1$ for any $0 \leq t \leq T$.
[Hint: a nonnegative local martingale is a (true) supermartingale.]
\qquad
The Itô formula for the Itô process

$$
X(t)=\lambda M(t)-\frac{1}{2} \lambda^{2} A(t)=\int_{0}^{t}\left(-\frac{1}{2} \lambda^{2}|\phi(s)|^{2}\right) d s+\int_{0}^{t} \lambda \phi(s) d B(s)
$$

and for the function $f(x)=\exp \{x\}$, with

$$
f^{\prime}(x)=f^{\prime \prime}(x)=\exp \{x\},
$$

yields

$$
\begin{align*}
Z^{\lambda}(t) & =1+\int_{0}^{t} Z^{\lambda}(s)\left[-\frac{1}{2} \lambda^{2}|\phi(s)|^{2} d s+\lambda \phi(s) d B(s)\right]+\frac{1}{2} \int_{0}^{t} Z^{\lambda}(s) \lambda^{2}|\phi(s)|^{2} d s \\
& =1+\lambda \int_{0}^{t} Z^{\lambda}(s) \phi(s) d B(s)
\end{align*}
$$

The integrand $s \mapsto Z^{\lambda}(s) \phi(s)$ belongs to $M_{\text {loc }}^{2}$ only, since

$$
\int_{0}^{T}\left|Z^{\lambda}(t) \phi(t)\right|^{2} d t \leq \max _{0 \leq t \leq T}\left|Z^{\lambda}(t)\right|^{2} \int_{0}^{T}|\phi(t)|^{2} d t<\infty
$$

almost surely, for any $T \geq 0$, and therefore the stochastic integral is only a (nonnegative) local martingale, and its expectation is not necessarily zero.

However, a nonnegative local martingale is a supermartingale. Indeed, let L be a nonnegative local martingale, i.e. there exists a non-decreasing sequence of stopping times, such that $\tau_{n} \uparrow \infty$ almost surely and such that the stopped process defined by $L\left(t \wedge \tau_{n}\right)$ for any $t \geq 0$ is a martingale. Then, for any $0 \leq s \leq t$ and any $A \in \mathcal{F}(s)$ it holds

$$
\mathbb{E}\left[1_{A} 1_{\left(\tau_{n} \geq s\right)} L(s)\right]=\mathbb{E}\left[1_{A} 1_{\left(\tau_{n} \geq s\right)} L\left(s \wedge \tau_{n}\right)\right]=\mathbb{E}\left[1_{A}^{1} 1_{\left(\tau_{n} \geq s\right)} L\left(t \wedge \tau_{n}\right)\right]
$$

since $A \cap\left\{\tau_{n} \geq s\right\} \in \mathcal{F}(s)$. The Lebesgue dominated convergence theorem yields

$$
\lim _{n \uparrow \infty} \mathbb{E}\left[1_{A} 1_{\left(\tau_{n} \geq s\right)} L(s)\right]=\mathbb{E}\left[1_{A} L(s)\right]
$$

and the Fatou lemma yields

$$
\lim _{n \uparrow \infty} \mathbb{E}\left[1_{A} 1_{\left(\tau_{n} \geq s\right)} L\left(t \wedge \tau_{n}\right)\right] \geq \mathbb{E}\left[1_{A} \liminf _{n \uparrow \infty}\left[1_{\left(\tau_{n} \geq s\right)} L\left(t \wedge \tau_{n}\right)\right]\right]=\mathbb{E}\left[1_{A} L(t)\right]
$$

hence

$$
\mathbb{E}\left[1_{A} L(s)\right] \geq \mathbb{E}\left[1_{A} L(t)\right]
$$

for any $A \in \mathcal{F}(s)$, i.e.

$$
L(s) \geq \mathbb{E}[L(t) \mid \mathcal{F}(s)]
$$

Therefore, the stochastic integral in (\star) is a supermartingale and its expectation is smaller than zero, hence

$$
\mathbb{E}\left[Z^{\lambda}(t)\right] \geq 1
$$

(ii) Assume that $A(t) \leq K t$ for any $0 \leq t \leq T$. Show the following exponential bound: for any positive $c>0$

$$
\mathbb{P}\left[\max _{0 \leq t \leq T}|M(t)|>c\right] \leq 2 \exp \left\{-\frac{c^{2}}{2 K T}\right\}
$$

[Hint: use the Chernoff approach to large deviations estimates, and the (easy) inequality

$$
\mu \mathbb{P}\left[\max _{0 \leq t \leq T} X(t)>\mu\right] \leq \mathbb{E}[X(0)],
$$

valid for any nonnegative supermartingale.] Solution

The proof of the inequality for a nonnegative supermartingale follows the same lines as in the discrete times case. Indeed, let L be a nonnegative supermartingale, and introduce the bounded stopping time

$$
\tau=\inf \{0 \leq s \leq t: L(s) \geq \mu\},
$$

if such time exists, and $\tau=t$ otherwise.
Note that if $\max _{0 \leq s \leq t} L(s) \geq \mu$, then $L(s) \geq \mu$ for some $0 \leq s \leq t$, hence $L(\tau) \geq \mu$.
It follows from the optional sampling theorem that

$$
\begin{aligned}
\mathbb{E}[L(0)] & \geq \mathbb{E}[L(\tau)] \\
& \left.=\mathbb{E}\left[1\left(\max _{0 \leq s \leq t} L(s) \geq \mu\right) L(\tau)\right]+\mathbb{E}\left[1 \max _{0 \leq s \leq t} L(s)<\mu\right) L(\tau)\right] \\
& \geq \mu \mathbb{P}\left[\max _{0 \leq s \leq t} L(s) \geq \mu\right],
\end{aligned}
$$

hence

$$
\mu \mathbb{P}\left[\max _{0 \leq s \leq t} L(s) \geq \mu\right] \leq \mathbb{E}[L(0)],
$$

and the claim is proved.
Note that for any $0 \leq s \leq t$

$$
\lambda M(s)=\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)+\frac{1}{2} \lambda^{2} A(s) \leq \lambda M(s)-\frac{1}{2} \lambda^{2} A(s)+\frac{1}{2} \lambda^{2} K t,
$$

hence for any positive $\lambda>0$

$$
\begin{aligned}
\max _{0 \leq s \leq t} M(s) \geq c & \Rightarrow \max _{0 \leq s \leq t}\left[\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)\right]+\frac{1}{2} \lambda^{2} K t \geq \lambda c \\
& \Rightarrow \max _{0 \leq s \leq t}\left[\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)\right] \geq \lambda c-\frac{1}{2} \lambda^{2} K t \\
& \Rightarrow \max _{0 \leq s \leq t} Z^{\lambda}(s) \geq \exp \left\{\lambda c-\frac{1}{2} \lambda^{2} K t\right\} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left[\max _{0 \leq s \leq t} M(s) \geq c\right] & \leq \mathbb{P}\left[\max _{0 \leq s \leq t} Z^{\lambda}(s) \geq \exp \left\{\lambda c-\frac{1}{2} \lambda^{2} K t\right\}\right] \\
& \leq \exp \left\{-\lambda c+\frac{1}{2} \lambda^{2} K t\right\},
\end{aligned}
$$

since Z^{λ} is a nonnegative supermartingale with $Z^{\lambda}(0)=1$.

Similarly, note that for any $0 \leq s \leq t$

$$
\lambda(-M(s))=-\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)+\frac{1}{2} \lambda^{2} A(s) \leq-\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)+\frac{1}{2} \lambda^{2} K t,
$$

hence for any positive $\lambda>0$

$$
\begin{aligned}
\max _{0 \leq s \leq t}(-M(s)) \geq c & \Rightarrow \max _{0 \leq s \leq t}\left[-\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)\right]+\frac{1}{2} \lambda^{2} K t \geq \lambda c \\
& \Rightarrow \max _{0 \leq s \leq t}\left[-\lambda M(s)-\frac{1}{2} \lambda^{2} A(s)\right] \geq \lambda c-\frac{1}{2} \lambda^{2} K t \\
& \Rightarrow \max _{0 \leq s \leq t} Z^{-\lambda}(s) \geq \exp \left\{\lambda c-\frac{1}{2} \lambda^{2} K t\right\} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left[\max _{0 \leq s \leq t}(-M(s)) \geq c\right] & \leq \mathbb{P}\left[\max _{0 \leq s \leq t} Z^{-\lambda}(s) \geq \exp \left\{\lambda c-\frac{1}{2} \lambda^{2} K t\right\}\right] \\
& \leq \exp \left\{-\lambda c+\frac{1}{2} \lambda^{2} K t\right\},
\end{aligned}
$$

since $Z^{-\lambda}$ is a nonnegative supermartingale with $Z^{-\lambda}(0)=1$.
Combining the two estimates yields

$$
\begin{aligned}
\mathbb{P}\left[\max _{0 \leq s \leq t}|M(s)| \geq c\right] & \leq \mathbb{P}\left[\max _{0 \leq s \leq t} M(s) \geq c\right]+\mathbb{P}\left[\min _{0 \leq s \leq t} M(s) \leq-c\right] \\
& =\mathbb{P}\left[\max _{0 \leq s \leq t} M(s) \geq c\right]+\mathbb{P}\left[\max _{0 \leq s \leq t}(-M(s)) \geq c\right] \\
& \leq 2 \exp \left\{-\lambda c+\frac{1}{2} \lambda^{2} K t\right\} .
\end{aligned}
$$

The bound holds for any positive $\lambda>0$, hence it holds also for the minimum over all possible values of $\lambda>0$. The minimum is achieved for $\lambda=c /(K t)>0$ and the minimum value is $2 \exp \left\{-\frac{1}{2} c^{2} /(K t)\right\}$, hence

$$
\mathbb{P}\left[\max _{0 \leq s \leq t}|M(s)| \geq c\right] \leq 2 \min _{\lambda>0} \exp \left\{-\lambda c+\frac{1}{2} \lambda^{2} K\right\}=2 \exp \left\{-\frac{1}{2} \frac{c^{2}}{K t}\right\} .
$$

(iii) In the general case, show that for any positive $c, K>0$

$$
\mathbb{P}\left[\max _{0 \leq t \leq T}|M(t)|>c\right] \leq 2 \exp \left\{-\frac{c^{2}}{2 K T}\right\}+\mathbb{P}[A(T)>K T] .
$$

\qquad Solution
Simply

$$
\begin{aligned}
\mathbb{P}\left[\max _{0 \leq t \leq T}|M(t)|>c\right] & =\mathbb{P}\left[\max _{0 \leq t \leq T}|M(t)|>c, A(T) \leq K T\right]+\mathbb{P}\left[\max _{0 \leq t \leq T}|M(t)|>c, A(T)>K T\right] \\
& \leq 2 \exp \left\{-\frac{c^{2}}{2 K T}\right\}+\mathbb{P}[A(T)>K T] .
\end{aligned}
$$

Exercise 4 [Feynman-Kac formula] Consider the following linear parabolic PDE

$$
\frac{\partial u}{\partial t}(t, x)=\frac{1}{2} \Delta u(t, x)-c(x) u(t, x), \quad \text { for any }(t, x) \in[0, \infty) \times \mathbb{R}^{d}
$$

with initial condition $u(0, x)=g(x)$ for any $x \in \mathbb{R}^{d}$. Here, the coefficient $c(x)$ is non-negative and bounded from above, its derivative $c^{\prime}(x)$ is bounded, and the initial condition $g(x)$ together with its derivative $g^{\prime}(x)$ are bounded. It is assumed that a solution $u(t, x)$ exists that is $C^{1,2}$ with a bounded derivative w.r.t. the space variable.
Fix $x \in \mathbb{R}^{d}$ and let B be a standard d-dimensional Brownian motion starting from $B(0)=x$.
(i) Fix $t>0$, and write the Itô formula for

$$
u(t-s, B(s)) \exp \left\{-\int_{0}^{s} c(B(r)) d r\right\}
$$

[Hint: show that the process

$$
V(s)=\exp \left\{-\int_{0}^{s} c(B(r)) d r\right\}
$$

is an Itô process, and write the Itô formula for the $(d+1)$-dimensional Itô process $(B(s), V(s))$ and for the time-dependent function $f(s, x, v)=u(t-s, x) v$.]
\qquad Solution \qquad

The usual chain rule yields

$$
\frac{d}{d t} V(t)=-c(B(t)) V(t)
$$

or in integrated form

$$
\left.V(s)=1-\int_{0}^{s} c(B(r))\right) V(r) d r .
$$

Next, the Itô formula for the $(d+1)$-dimensional Itô process

$$
\binom{B(s)}{V(s)}=\binom{0}{1}+\int_{0}^{s}\binom{0}{-c(B(r)) V(r)} d r+\int_{0}^{s}\binom{I}{0} d B(r),
$$

and for the time-dependent function $f(s, x, v)=u(t-s, x) v$, with

$$
\frac{\partial f}{\partial t}(s, x, v)=-\frac{\partial u}{\partial t}(t-s, x) v
$$

and
$f^{\prime}(s, x, v)=\left(\begin{array}{ll}\frac{\partial u}{\partial x}(t-s, x) v & u(t-s, x))\end{array} \quad\right.$ and $\quad f^{\prime \prime}(s, x, v)=\left(\begin{array}{ll}\frac{\partial^{2} u}{\partial x^{2}}(t-s, x) v & \frac{\partial u}{\partial x}(t-s, x) \\ \frac{\partial u}{\partial x}(t-s, x) & 0\end{array}\right)$
yields

$$
\begin{aligned}
& u(t-s, B(s)) V(s)=u(t,x) \\
&+\int_{0}^{s}\left[-\frac{\partial u}{\partial t}(t-r, B(r)) V(r)\right] d r \\
&+\int_{0}^{s}\left(\frac{\partial u}{\partial x}(t-r, B(r)) V(r) \quad u(t-r, B(r))\right)\binom{0}{-c(B(r)) V(r)} d r \\
&+\int_{0}^{s}\left(\frac{\partial u}{\partial x}(t-r, B(r)) V(r) \quad u(t-r, B(r))\right)\binom{I}{0} d B(r) \\
&+\int_{0}^{s} \operatorname{trace}\left[\left(\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}(t-r, B(r)) V(r) & \frac{\partial u}{\partial x}(t-r, B(r)) \\
\frac{\partial u}{\partial x}(t-r, B(r))
\end{array}\right)\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\right] d r \\
&=u i(t, x)-\int_{0}^{s} \frac{\partial u}{\partial t}(t-r, B(r)) V(r) d r \\
&-\int_{0}^{s} c(B(r)) u(t-r, B(r)) V(r) d r \\
&+\int_{0}^{s} \frac{\partial u}{\partial x}(t-r, B(r)) V(r) d B(r) \\
&+\frac{1}{2} \int_{0}^{s} \Delta u(t-r, B(r)) V(r) d r
\end{aligned}
$$

Collecting all the ordinary integral terms reduces to

$$
-\int_{0}^{s}\left[\frac{\partial u}{\partial t}(t-r, B(r))-\frac{1}{2} \Delta u(t-r, B(r))+c(B(r)) u(t-r, B(r))\right] V(r) d r=0
$$

since

$$
\frac{\partial u}{\partial t}(s, y)-\frac{1}{2} \Delta u(s, y)+c(y) u(s, y)=0
$$

for any $s \geq 0$ and any $y \in \mathbb{R}^{d}$, and the identity holds in particular for $s=t-r$ and for $y=B(r)$. Therefore

$$
u(t-s, B(s)) V(s)=u(t, x)+\int_{0}^{s} \frac{\partial u}{\partial x}(t-r, B(r)) V(r) d B(r)
$$

and in particular for $s=t$ it holds

$$
u(t, x)+\int_{0}^{t} \frac{\partial u}{\partial x}(t-r, B(r)) V(r) d B(r)=u(0, B(t)) V(t)=g(B(t)) \exp \left\{-\int_{0}^{t} c(B(r)) d r\right\}
$$

(ii) Show that

$$
u(t, x)=\mathbb{E}_{0, x}\left[g(B(t)) \exp \left\{-\int_{0}^{t} c(B(r)) d r\right\}\right] .
$$

(iii) Check a posteriori that the derivative w.r.t. the space variable is bounded.
[Hint: write $B(t)=x+B_{0}(t)$ with another standard d-dimensional Brownian motion starting from $B_{0}(0)=0$.]

Exercise 5 [Wong-Zakai approximation] Let B be a one-dimensional standard Brownian motion, and let

$$
B_{n}(t)=\int_{0}^{t} \dot{B}_{n}(s) d s
$$

be an absolutely continuous approximation, such that $B_{n}(t) \rightarrow B(t)$ almost surely as $n \uparrow \infty$. Let f be a twice differentiable function, and let $u=f^{\prime}$.
(i) Write the usual chain rule (change of variable formula) for $f\left(B_{n}(t)\right)$.
\qquad Solution \qquad
The usual chain rule yields

$$
\frac{d}{d t} f\left(B_{n}(t)\right)=f^{\prime}\left(B_{n}(t)\right) \dot{B}_{n}(t)
$$

or in integrated form

$$
f\left(B_{n}(t)\right)=f\left(B_{n}(0)\right)+\int_{0}^{t} f^{\prime}\left(B_{n}(s)\right) \dot{B}_{n}(s) d s .
$$

(ii) Write the Itô formula for $f(B(t))$.

The Itô formula yields

$$
f(B(t))=f(B(0))+\int_{0}^{t} f^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s
$$

(iii) What is the limit as $n \uparrow \infty$ of

$$
\int_{0}^{t} u\left(B_{n}(s)\right) d B_{n}(s)=\int_{0}^{t} u\left(B_{n}(s)\right) \dot{B}_{n}(s) d s ?
$$

Clearly, $f\left(B_{n}(t)\right)-f\left(B_{n}(0)\right) \rightarrow f(B(t))-f(B(0))$, hence

$$
\int_{0}^{t} u\left(B_{n}(s)\right) \dot{B}_{n}(s) d s \rightarrow \int_{0}^{t} u(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} u^{\prime}(B(s)) d s
$$

as $n \uparrow \infty$.

As an illustration, one can consider the polygonal approximation

$$
B_{n}(s)=\frac{B\left(t_{i-1}^{n}\right)\left(t_{i}^{n}-s\right)+B\left(t_{i}^{n}\right)\left(s-t_{i-1}^{n}\right)}{t_{i}^{n}-t_{i-1}^{n}} \quad \text { for any } t_{i-1}^{n} \leq s \leq t_{i}^{n}
$$

associated with a convergent partition $0=t_{0}^{n}<t_{1}^{n}<\cdots<t_{n}^{n}=t$ of $[0, t]$.
\qquad Solution \qquad
Clearly

$$
\begin{aligned}
\int_{0}^{t} u\left(B_{n}(s)\right) \dot{B}_{n}(s) d s & =\sum_{i=1}^{n} \int_{t_{i-1}^{n}}^{t_{i}^{n}} u\left(B_{n}(s)\right) \frac{B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)}{t_{i}^{n}-t_{i-1}^{n}} d s \\
& =\sum_{i=1}^{n}\left[\frac{1}{t_{i}^{n}-t_{i-1}^{n}} \int_{t_{i-1}^{n}}^{t_{i}^{n}} u\left(B_{n}(s)\right) d s\right]\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)
\end{aligned}
$$

fails to converge to the stochastic integral, simply because

$$
\frac{1}{t_{i}^{n}-t_{i-1}^{n}} \int_{t_{i-1}^{n}}^{t_{i}^{n}} u\left(B_{n}(s)\right) d s=\frac{1}{t_{i}^{n}-t_{i-1}^{n}} \int_{t_{i-1}^{n}}^{t_{i}^{n}} u\left(\frac{B\left(t_{i-1}^{n}\right)\left(t_{i}^{n}-s\right)+B\left(t_{i}^{n}\right)\left(s-t_{i-1}^{n}\right)}{t_{i}^{n}-t_{i-1}^{n}}\right) d s
$$

is a (complicated) function of the two random variables $B\left(t_{i-1}^{n}\right)$ and $B\left(t_{i}^{n}\right)$, and cannot be measurable w.r.t. $\mathcal{F}\left(t_{i-1}^{n}\right)$, for any $i=1, \cdots, n$.

