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Exercise 1 [Integration by parts] Let B(t) be a d–dimensional standard Brownian motion,
and let X1(t) and X2(t) be two one–dimensional Itô processes, with

Xi(t) = Xi(0) +

∫ t

0
ψi(s) ds+

∫ t

0
φi(s) dB(s) for i = 1, 2.

Here φ1(s) and φ2(s) are two 1× d matrices (row vectors).

(i) Write the Itô formula for the one–dimensional process X1(t)X2(t).

Solution

The two–dimensional process X(t) = (X1(t), X2(t)) is an Itô process, with

ψ(s) =

(
ψ1(s)
ψ2(s)

)
and φ(s) =

(
φ1(s)
φ2(s)

)
The Itô formula for the Itô process X(t) and for the function f(x1, x2) = x1 x2, with

f ′(x1, x2) = (x2 x1) and f ′′(x1, x2) =

(
0 1
1 0

)
,

yields

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0
(X2(s) X1(s)) [

(
ψ1(s)
ψ2(s)

)
ds+

(
φ1(s)
φ2(s)

)
dB(s)]

+ 1
2

∫ t

0
trace[

(
0 1
1 0

) (
φ1(s)φ

∗
1(s) φ1(s)φ

∗
2(s)

φ2(s)φ
∗
1(s) φ2(s)φ

∗
2(s)

)
] ds

= X1(0)X2(0) +

∫ t

0
(X2(s)ψ1(s) +X1(s)ψ2(s)) ds

+

∫ t

0
(X2(s)φ1(s) +X1(s)φ2(s)) dB(s)

+ 1
2

∫ t

0
(φ1(s)φ

∗
2(s) + φ2(s)φ

∗
1(s)) ds ,
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or in other words

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0
X2(s) dX1(s) +

∫ t

0
X1(s) dX2(s)

+ 1
2

∫ t

0
(φ1(s)φ

∗
2(s) + φ2(s)φ

∗
1(s)) ds .

2

Multi–dimensional version: Let B(t) be a d–dimensional standard Brownian motion, and let
X1(t) and X2(t) be two m–dimensional Itô processes, with

Xi(t) = Xi(0) +

∫ t

0
ψi(s) ds+

∫ t

0
φi(s) dB(s) for i = 1, 2.

Here ψ1(s) and ψ2(s) are two m–dimensional vectors, and φ1(s) and φ2(s) are two m×d matrices.

(ii) Write the Itô formula for the one–dimensional process X∗1 (t)X2(t) and for the
m×m matrix–valued process X1(t)X

∗
2 (t).

[Hint: for the second part, apply the result obtained at question (i) to the two one–dimensional
Itô processes u∗1X1(t) and u∗2X2(t) where u1 and u2 are two arbitrary vectors in Rm.]

Solution

First part (scalar product): The 2m–dimensional process X(t) = (X1(t), X2(t)) is an Itô process,
with

ψ(s) =

(
ψ1(s)
ψ2(s)

)
and φ(s) =

(
φ1(s)
φ2(s)

)
The Itô formula for the Itô process X(t) and for the function f(x1, x2) = x∗1 x2, with

f ′(x1, x2) = (x∗2 x∗1) and f ′′(x1, x2) =

(
0 I
I 0

)
,

yields

X1(t)X
∗
2 (t) = X∗1 (0)X2(0) +

∫ t

0
(X∗2 (s) X∗1 (s)) [

(
ψ1(s)
ψ2(s)

)
ds+

(
φ1(s)
φ2(s)

)
dB(s)]

+ 1
2

∫ t

0
trace[

(
0 I
I 0

) (
φ1(s)φ

∗
1(s) φ1(s)φ

∗
2(s)

φ2(s)φ
∗
1(s) φ2(s)φ

∗
2(s)

)
] ds

= X∗1 (0)X2(0) +

∫ t

0
(X∗2 (s)ψ1(s) +X∗1 (s)ψ2(s)) ds

+

∫ t

0
(X∗2 (s)φ1(s) +X∗1 (s)φ2(s)) dB(s)

+ 1
2

∫ t

0
trace[φ1(s)φ

∗
2(s) + φ2(s)φ

∗
1(s)] ds ,

2



or in other words

X∗1 (t)X2(t) = X∗1 (0)X2(0) +

∫ t

0
X∗2 (s) dX1(s) +

∫ t

0
X∗1 (s) dX2(s)

+ 1
2

∫ t

0
trace[φ1(s)φ

∗
2(s) + φ2(s)φ

∗
1(s)] ds .

Second part: If u1 and u2 are m–dimensional vectors, then u∗1X1(t) and u∗2X2(t) are two one–
dimensional Itô processes, with

u∗i Xi(t) = u∗i Xi(0) +

∫ t

0
u∗i ψi(s) ds+

∫ t

0
u∗i φi(s) dB(s) for i = 1, 2.

Here u∗1 φ1(s) and u∗1 φ2(s) are two 1 × d matrices (row vectors). Applying the result obtained
at question (i) yields

u∗1X1(t)u
∗
2X2(t) = u∗1X1(0)u∗2X2(0) +

∫ t

0
u∗2X2(s) d[u∗1X1(s)] +

∫ t

0
u∗1X1(s) d[u∗2X2(s)]

+ 1
2

∫ t

0
[u∗1 φ1(s)u

∗
2 φ
∗
2(s) + u∗2 φ2(s)u

∗
1 φ
∗
1(s)] ds ,

or equivalently, after rearranging terms

u∗1X1(t)X
∗
2 (t)u2 = u∗1X1(0)X∗2 (0)u2 +

∫ t

0
u∗1 dX1(s)X

∗
2 (s)u2 +

∫ t

0
u∗1X1(s) dX

∗
2 (s)u2

+

∫ t

0
u∗1 φ1(s)φ

∗
2(s)u2 ds ,

or in other words

X1(t)X
∗
2 (t) = X1(0)X∗2 (0) +

∫ t

0
dX1(s)X

∗
2 (s) +

∫ t

0
X1(s) dX

∗
2 (s)

+

∫ t

0
φ1(s)φ

∗
2(s) ds ,

since the vectors u1 and u2 are arbitrary.

2

Problem 2 [Burkholder–Davis–Gundy inequalities] Let B be a one–dimensional stan-
dard Brownian motion, and for any φ ∈M2([0, T ]) define

M(t) =

∫ t

0
φ(s) dB(s) , M∗(t) = max

0≤s≤t
|M(s)| , A(t) =

∫ t

0
|φ(s)|2 ds .

The objective is to show that for any p ≥ 2, there exist positive constants 0 < cp ≤ Cp < ∞
such that for any 0 ≤ t ≤ T

cp E|A(t)|p/2 ≤ E|M∗(t)|p ≤ Cp E|A(t)|p/2 ,

i.e. the moments of a martingale can be controlled in terms of the moments of its increasing
process.
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(i) Show that the upper bound holds for p = 2.

[Hint: use the Doob inequality.]

Solution

The Doob inequality for p = 2 provides a uniform control in terms of the terminal value

E[ max
0≤s≤t

|M(s)|2] ≤ 4 E|M(t)|2 ,

and the Itô isometry yields

E|M(t)|2 = E
∫ t

0
|φ(s)|2 ds = E[A(t)] .

Combining the two estimates provide a uniform control in terms of the increasing process, i.e.

E[ max
0≤s≤t

|M(s)|2] ≤ 4E[A(t)] .

2

The following boundedness assumption will be used:

there exists a positive K > 0 such that A(T ) ≤ K2 and |M(t)| ≤ K for any 0 ≤ t ≤ T .

(ii) Assume that the result holds under the boundedness assumption. Show that
the result can be extended to the general case.

[Hint: for any n ≥ 1, consider the stopping time

τn = inf{0 ≤ t ≤ T : |M(t)| ≥ n or A(t) ≥ n} or τn = T ,

and the stopped martingale defined by Mn(t) = M(t ∧ τn) for any 0 ≤ t ≤ T .]

From now on, the boundedness assumption is made.

Upper bound:

(iii) Show that the p–th order moment E|M∗(t)|p can be bounded in terms of E|M(t)|p.

[Hint: use the Doob inequality.]

Solution

It follows from the Doob inequality that

{E[ max
0≤s≤t

|M(s)|p ]}1/p ≤ p

p− 1
{E|M(t)|p}1/p ,

or in other words

E|M∗(t)|p = E[ max
0≤s≤t

|M(s)|p ] ≤ (
p

p− 1
)p E|M(t)|p .

2
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(iv) Write the Itô formula for |M(t)|p. Show that the p–th order moment E|M(t)|p
can be bounded in terms of E[|M∗(t)|p−2 A(t)], and further bounded in terms of
E|M∗(t)|p and E|A(t)|p/2.

[Hint: for the last part, use the Hölder inequality.]

Solution

The Itô formula for the Itô process

M(t) =

∫ t

0
φ(s) dB(s) ,

and for the function g(x) = |x|p, with

f ′x) = p |x|p−1 sign(x) and f ′′(x) = p (p− 1) |x|p−2 ,

yields

|M(t)|p = p

∫ t

0
|M(s)|p−1 sign(M(s))φ(s) dB(s) + 1

2 p (p− 1)

∫ t

0
|M(s)|p−2 |φ(s)|2 ds .

Under the boundedness assumption, the integrand s 7→ |M(s)|p−1 sign(M(s))φ(s) belongs to
M2([0, T ]), since

E
∫ T

0
||M(s)|p−1 sign(M(s))φ(s)|2 ds ≤ K2p−2 E

∫ T

0
|φ(s)|2 ds ≤ K2p <∞ ,

and therefore the stochastic integral is a martingale and its expectation is zero. Taking expec-
tation yields

E|M(t)|p = 1
2 p (p− 1) E[

∫ t

0
|M(s)|p−2 |φ(s)|2 ds]

≤ 1
2 p (p− 1)E[ max

0≤s≤t
|M(s)|p−2

∫ t

0
|φ(s)|2 ds]

= 1
2 p (p− 1)E[ |M∗(t)|p−2 A(t)] .

The Hölder inequality for conjugate exponents q = p/(p− 2) and q′ = 1
2 p yields

E[|M∗(t)|p−2 A(t)] ≤ {E|M∗(t)|q (p−2)}1/q {E|A(t)|q′}1/q′

= {E|M∗(t)|p}1−2/p {E|A(t)|p/2}2/p ,

hence
E|M(t)|p ≤ 1

2 p (p− 1) {E|M∗(t)|p}1−2/p {E|A(t)|p/2}2/p .
Reporting this inequality in the inequality obtained in question (iii) yields

E|M∗(t)|p ≤ (
p

p− 1
)p E|M(t)|p

≤ (
p

p− 1
)p 1

2 p (p− 1) {E|M∗(t)|p}1−2/p {E|A(t)|p/2}2/p ,
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and collecting all E|M∗(t)|p terms in the left–hand side yields

{E|M∗(t)|p}2/p ≤ (
p

p− 1
)p 1

2 p (p− 1) {E|A(t)|p/2}2/p ,

or equivalently

E|M∗(t)|p ≤ [ (
p

p− 1
)p 1

2 p (p− 1) ]p/2 E|A(t)|p/2 .

2

Lower bound: Define

Y (t) =

∫ t

0
|A(s)|(p−1)/2 φ(s) dB(s) .

(v) Show that E|Y (t)|2 =
1

p
E|A(t)|p.

Solution

Under the boundedness assumption, the integrand s 7→ |A(s)|(p−1)/2 φ(s) belongs to M2([0, T ]),
since

E
∫ T

0
|A(s)|p−1 |φ(s)|2 ds ≤ K2p−2 E

∫ T

0
|φ(s)|2 ds ≤ K2p <∞ ,

and the Itô isometry yields

E|Y (t)|2 = E
∫ T

0
|A(s)|p−1 |φ(s)|2 ds .

On the other hand, the usual chain rule yields

d

dt
|A(t)|p = p |A(t)|p−1 |φ(t)|2 ,

or, in integrated form

|A(t)|p = p

∫ t

0
|A(s)|p−1 |φ(s)|2 ds .

Taking expectation yields

E|A(t)|p = p E
∫ t

0
|A(t)|p−1 |φ(s)|2 ds = p E|Y (t)|2 . 2

2

(vi) Using the Itô formula for M(t) |A(t)|(p−1)/2, get an alternate expression for Y (t)
and show the bound |Y (t)| ≤ 2M∗(t) |A(t)|(p−1)/2. Show that the p–th order
moment E|A(t)|p can be bounded in terms of E|M∗(t)|2p and E|A(t)|p.
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[Hint: for the last part, use the Hölder inequality.]

Solution

Note that the usual chain rule yields

d

dt
|A(t)|(p−1)/2 = 1

2 (p− 1) |A(t)|(p−3)/2 |φ(t)|2 ,

or, in integrated form

|A(t)|(p−1)/2 = 1
2 (p− 1)

∫ t

0
|A(s)|(p−3)/2 |φ(s)|2 ds .

The Itô formula (integration by parts) for the two component Itô process(
M(t)

|A(t)|(p−1)/2
)

= 1
2 (p− 1)

∫ t

0

(
0

|A(s)|(p−3)/2 |φ(s)|2
)
ds+

∫ t

0

(
φ(s)

0

)
dB(s) ,

yields

M(t) |A(t)|(p−1)/2 = 1
2 (p− 1)

∫ t

0
M(s) |A(s)|(p−3)/2 |φ(s)|2 ds

+

∫ t

0
|A(s)|(p−1)/2 φ(s) dB(s) ,

hence

Y (t) =

∫ t

0
|A(s)|(p−1)/2 φ(s) dB(s)

= M(t) |A(t)|(p−1)/2 − 1
2 (p− 1)

∫ t

0
M(s) |A(s)|(p−3)/2 |φ(s)|2 ds .

Note that
|M(t) |A(t)|(p−1)/2 ≤M∗(t) |A(t)|(p−1)/2 ,

and

|12 (p− 1)

∫ t

0
M(s) |A(s)|(p−3)/2 |φ(s)|2 ds| ≤ M∗(t)

1
2 (p− 1)

∫ t

0
|A(s)|(p−3)/2 |φ(s)|2 ds

≤ M∗(t) |A(t)|(p−1)/2 .

and the triangle inequality yields

|Y (t)| ≤ 2M∗(t) |A(t)|(p−1)/2 .

Therefore

E|A(t)|p = p E|Y (t)|2 ≤ 4 p E[|M∗(t)|2 |A(t)|p−1] .
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The Hölder inequality for conjugate exponents q = p/(p− 1) and q′ = p yields

E[|M∗(t)|2 |A(t)|p−1] ≤ {E|M∗(t)|2q
′)}1/q′ {E|A(t)|q (p−1)}1/q

= {E|M∗(t)|2p}1/p {E|A(t)|p}1−1/p ,

hence
E|A(t)|p ≤ 4 p {E|M∗(t)|2p}1/p {E|A(t)|p}1−1/p ,

and collecting all E|A(t)|p terms in the left–hand side yields

{E|A(t)|p}1/p ≤ 4 p {E|M∗(t)|2p}1/p ,

or equivalently
E|A(t)|p ≤ (4 p)p E|M∗(t)|2p .

2

Exercice 3 [Exponential bound] Let B be a one–dimensional standard Brownian motion,
and for any φ ∈M2([0, T ]) define

M(t) =

∫ t

0
φ(s) dB(s) , A(t) =

∫ t

0
|φ(s)|2 ds .

For any positive λ > 0 define

Zλ(t) = exp{λM(t)− 1
2 λ

2A(t)} .

In the special case where φ ≡ 1, the process M is a Brownian motion, and the process Zλ is a
martingale. This was shown using the expression of the Laplace transform of a Gaussian r.v.
and this trick cannot be used in the general case.

(i) Write the Itô formula for Zλ(t), show that it is a (local) martingale, hence
E[Zλ(t)] ≤ 1 for any 0 ≤ t ≤ T .

[Hint: a nonnegative local martingale is a (true) supermartingale.]

Solution

The Itô formula for the Itô process

X(t) = λM(t)− 1
2 λ

2A(t) =

∫ t

0
(−1

2 λ
2 |φ(s)|2) ds+

∫ t

0
λφ(s) dB(s) ,

and for the function f(x) = exp{x}, with

f ′(x) = f ′′(x) = exp{x} ,

8



yields

Zλ(t) = 1 +

∫ t

0
Zλ(s) [− 1

2 λ
2 |φ(s)|2 ds+ λφ(s) dB(s)] + 1

2

∫ t

0
Zλ(s) λ2 |φ(s)|2 ds

= 1 + λ

∫ t

0
Zλ(s)φ(s) dB(s) .

(?)

The integrand s 7→ Zλ(s)φ(s) belongs to M2
loc only, since∫ T

0
|Zλ(t)φ(t)|2 dt ≤ max

0≤t≤T
|Zλ(t)|2

∫ T

0
|φ(t)|2 dt <∞

almost surely, for any T ≥ 0, and therefore the stochastic integral is only a (nonnegative) local
martingale, and its expectation is not necessarily zero.

However, a nonnegative local martingale is a supermartingale. Indeed, let L be a nonnegative
local martingale, i.e. there exists a non–decreasing sequence of stopping times, such that τn ↑ ∞
almost surely and such that the stopped process defined by L(t∧τn) for any t ≥ 0 is a martingale.
Then, for any 0 ≤ s ≤ t and any A ∈ F(s) it holds

E[1A 1(τn ≥ s) L(s)] = E[1A 1(τn ≥ s) L(s ∧ τn)] = E[1A 1(τn ≥ s) L(t ∧ τn)] ,

since A ∩ {τn ≥ s} ∈ F(s). The Lebesgue dominated convergence theorem yields

lim
n↑∞

E[1A 1(τn ≥ s) L(s)] = E[1A L(s)] ,

and the Fatou lemma yields

lim
n↑∞

E[1A 1(τn ≥ s) L(t ∧ τn)] ≥ E[1A lim inf
n↑∞

[1(τn ≥ s) L(t ∧ τn)] ] = E[1A L(t)] ,

hence
E[1A L(s)] ≥ E[1A L(t)] ,

for any A ∈ F(s), i.e.
L(s) ≥ E[L(t) | F(s)] .

Therefore, the stochastic integral in (?) is a supermartingale and its expectation is smaller than
zero, hence

E[Zλ(t)] ≥ 1 .

2

(ii) Assume that A(t) ≤ K t for any 0 ≤ t ≤ T . Show the following exponential
bound: for any positive c > 0

P[ max
0≤t≤T

|M(t)| > c] ≤ 2 exp{− c2

2K T
} .
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[Hint: use the Chernoff approach to large deviations estimates, and the (easy) inequality

µ P[ max
0≤t≤T

X(t) > µ] ≤ E[X(0)] ,

valid for any nonnegative supermartingale.]

Solution

The proof of the inequality for a nonnegative supermartingale follows the same lines as in the
discrete times case. Indeed, let L be a nonnegative supermartingale, and introduce the bounded
stopping time

τ = inf{0 ≤ s ≤ t : L(s) ≥ µ} ,

if such time exists, and τ = t otherwise.

Note that if max
0≤s≤t

L(s) ≥ µ, then L(s) ≥ µ for some 0 ≤ s ≤ t, hence L(τ) ≥ µ.

It follows from the optional sampling theorem that

E[L(0)] ≥ E[L(τ)]

= E[1( max
0≤s≤t

L(s) ≥ µ) L(τ)] + E[1( max
0≤s≤t

L(s) < µ) L(τ)]

≥ µ P[ max
0≤s≤t

L(s) ≥ µ] ,

hence
µ P[ max

0≤s≤t
L(s) ≥ µ] ≤ E[L(0)] ,

and the claim is proved.

Note that for any 0 ≤ s ≤ t

λM(s) = λM(s)− 1
2 λ

2A(s) + 1
2 λ

2A(s) ≤ λM(s)− 1
2 λ

2A(s) + 1
2 λ

2K t ,

hence for any positive λ > 0

max
0≤s≤t

M(s) ≥ c ⇒ max
0≤s≤t

[λM(s)− 1
2 λ

2A(s)] + 1
2 λ

2K t ≥ λ c

⇒ max
0≤s≤t

[λM(s)− 1
2 λ

2A(s)] ≥ λ c− 1
2 λ

2K t

⇒ max
0≤s≤t

Zλ(s) ≥ exp{λ c− 1
2 λ

2K t} .

Therefore

P[ max
0≤s≤t

M(s) ≥ c] ≤ P[ max
0≤s≤t

Zλ(s) ≥ exp{λ c− 1
2 λ

2K t}]

≤ exp{−λ c+ 1
2 λ

2K t} ,

since Zλ is a nonnegative supermartingale with Zλ(0) = 1.
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Similarly, note that for any 0 ≤ s ≤ t

λ (−M(s)) = −λM(s)− 1
2 λ

2A(s) + 1
2 λ

2A(s) ≤ −λM(s)− 1
2 λ

2A(s) + 1
2 λ

2K t ,

hence for any positive λ > 0

max
0≤s≤t

(−M(s)) ≥ c ⇒ max
0≤s≤t

[−λM(s)− 1
2 λ

2A(s)] + 1
2 λ

2K t ≥ λ c

⇒ max
0≤s≤t

[−λM(s)− 1
2 λ

2A(s)] ≥ λ c− 1
2 λ

2K t

⇒ max
0≤s≤t

Z−λ(s) ≥ exp{λ c− 1
2 λ

2K t} .

Therefore

P[ max
0≤s≤t

(−M(s)) ≥ c] ≤ P[ max
0≤s≤t

Z−λ(s) ≥ exp{λ c− 1
2 λ

2K t}]

≤ exp{−λ c+ 1
2 λ

2K t} ,

since Z−λ is a nonnegative supermartingale with Z−λ(0) = 1.

Combining the two estimates yields

P[ max
0≤s≤t

|M(s)| ≥ c] ≤ P[ max
0≤s≤t

M(s) ≥ c] + P[ min
0≤s≤t

M(s) ≤ −c]

= P[ max
0≤s≤t

M(s) ≥ c] + P[ max
0≤s≤t

(−M(s)) ≥ c]

≤ 2 exp{−λ c+ 1
2 λ

2K t} .

The bound holds for any positive λ > 0, hence it holds also for the minimum over all possible
values of λ > 0. The minimum is achieved for λ = c/(K t) > 0 and the minimum value is
2 exp{−1

2 c
2/(K t)}, hence

P[ max
0≤s≤t

|M(s)| ≥ c] ≤ 2 min
λ>0

exp{−λ c+ 1
2 λ

2K} = 2 exp{−1
2

c2

K t
} .

2

(iii) In the general case, show that for any positive c,K > 0

P[ max
0≤t≤T

|M(t)| > c] ≤ 2 exp{− c2

2K T
}+ P[A(T ) > K T ] .

Solution

Simply

P[ max
0≤t≤T

|M(t)| > c] = P[ max
0≤t≤T

|M(t)| > c,A(T ) ≤ K T ] + P[ max
0≤t≤T

|M(t)| > c,A(T ) > K T ]

≤ 2 exp{− c2

2K T
}+ P[A(T ) > K T ] . 2

2
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Exercise 4 [Feynman–Kac formula] Consider the following linear parabolic PDE

∂u

∂t
(t, x) = 1

2 ∆u(t, x)− c(x) u(t, x) , for any (t, x) ∈ [0,∞)× Rd

with initial condition u(0, x) = g(x) for any x ∈ Rd. Here, the coefficient c(x) is non–negative
and bounded from above, its derivative c′(x) is bounded, and the initial condition g(x) together
with its derivative g′(x) are bounded. It is assumed that a solution u(t, x) exists that is C1,2

with a bounded derivative w.r.t. the space variable.

Fix x ∈ Rd and let B be a standard d–dimensional Brownian motion starting from B(0) = x.

(i) Fix t > 0, and write the Itô formula for

u(t− s,B(s)) exp{−
∫ s

0
c(B(r)) dr} .

[Hint: show that the process

V (s) = exp{−
∫ s

0
c(B(r)) dr} ,

is an Itô process, and write the Itô formula for the (d+ 1)–dimensional Itô process (B(s), V (s))
and for the time–dependent function f(s, x, v) = u(t− s, x) v.]

Solution

The usual chain rule yields
d

dt
V (t) = −c(B(t))V (t) ,

or in integrated form

V (s) = 1−
∫ s

0
c(B(r)))V (r) dr .

Next, the Itô formula for the (d+ 1)–dimensional Itô process(
B(s)
V (s)

)
=

(
0
1

)
+

∫ s

0

(
0

−c(B(r))V (r)

)
dr +

∫ s

0

(
I
0

)
dB(r) ,

and for the time–dependent function f(s, x, v) = u(t− s, x) v, with

∂f

∂t
(s, x, v) = −∂u

∂t
(t− s, x) v

and

f ′(s, x, v) = (
∂u

∂x
(t− s, x) v u(t− s, x)) and f ′′(s, x, v) =


∂2u

∂x2
(t− s, x) v

∂u

∂x
(t− s, x)

∂u

∂x
(t− s, x) 0
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yields

u(t− s,B(s))V (s) = u(t, x) +

∫ s

0
[−∂u
∂t

(t− r,B(r)) V (r)] dr

+

∫ s

0
(
∂u

∂x
(t− r,B(r)) V (r) u(t− r,B(r)))

(
0

−c(B(r))V (r)

)
dr

+

∫ s

0
(
∂u

∂x
(t− r,B(r)) V (r) u(t− r,B(r)))

(
I
0

)
dB(r)

+

∫ s

0
trace[


∂2u

∂x2
(t− r,B(r)) V (r)

∂u

∂x
(t− r,B(r))

∂u

∂x
(t− r,B(r)) 0


(
I 0
0 0

)
] dr

= ui(t, x)−
∫ s

0

∂u

∂t
(t− r,B(r)) V (r) dr

−
∫ s

0
c(B(r))u(t− r,B(r))V (r) dr

+

∫ s

0

∂u

∂x
(t− r,B(r))V (r) dB(r)

+ 1
2

∫ s

0
∆u(t− r,B(r))V (r) dr

Collecting all the ordinary integral terms reduces to

−
∫ s

0
[
∂u

∂t
(t− r,B(r))− 1

2 ∆u(t− r,B(r)) + c(B(r))u(t− r,B(r)) ]V (r) dr = 0

since
∂u

∂t
(s, y)− 1

2 ∆u(s, y) + c(y) u(s, y) = 0 ,

for any s ≥ 0 and any y ∈ Rd, and the identity holds in particular for s = t−r and for y = B(r).
Therefore

u(t− s,B(s))V (s) = u(t, x) +

∫ s

0

∂u

∂x
(t− r,B(r))V (r) dB(r) ,

and in particular for s = t it holds

u(t, x) +

∫ t

0

∂u

∂x
(t− r,B(r))V (r) dB(r) = u(0, B(t))V (t) = g(B(t)) exp{−

∫ t

0
c(B(r)) dr} .

2

(ii) Show that

u(t, x) = E0,x[g(B(t)) exp{−
∫ t

0
c(B(r)) dr}] .
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(iii) Check a posteriori that the derivative w.r.t. the space variable is bounded.

[Hint: write B(t) = x + B0(t) with another standard d–dimensional Brownian motion starting
from B0(0) = 0.]

Exercise 5 [Wong–Zakai approximation] Let B be a one–dimensional standard Brownian
motion, and let

Bn(t) =

∫ t

0
Ḃn(s) ds ,

be an absolutely continuous approximation, such that Bn(t) → B(t) almost surely as n ↑ ∞.
Let f be a twice differentiable function, and let u = f ′.

(i) Write the usual chain rule (change of variable formula) for f(Bn(t)).

Solution

The usual chain rule yields
d

dt
f(Bn(t)) = f ′(Bn(t)) Ḃn(t) ,

or in integrated form

f(Bn(t)) = f(Bn(0)) +

∫ t

0
f ′(Bn(s)) Ḃn(s) ds .

2

(ii) Write the Itô formula for f(B(t)).

Solution

The Itô formula yields

f(B(t)) = f(B(0)) +

∫ t

0
f ′(B(s)) dB(s) + 1

2

∫ t

0
f ′′(B(s)) ds .

2

(iii) What is the limit as n ↑ ∞ of∫ t

0
u(Bn(s)) dBn(s) =

∫ t

0
u(Bn(s)) Ḃn(s) ds ?
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Solution

Clearly, f(Bn(t))− f(Bn(0))→ f(B(t))− f(B(0)), hence∫ t

0
u(Bn(s)) Ḃn(s) ds→

∫ t

0
u(B(s)) dB(s) + 1

2

∫ t

0
u′(B(s)) ds ,

as n ↑ ∞.

2

As an illustration, one can consider the polygonal approximation

Bn(s) =
B(tni−1) (tni − s) +B(tni ) (s− tni−1)

tni − tni−1
for any tni−1 ≤ s ≤ tni

associated with a convergent partition 0 = tn0 < tn1 < · · · < tnn = t of [0, t].

Solution

Clearly ∫ t

0
u(Bn(s)) Ḃn(s) ds =

n∑
i=1

∫ tni

tni−1

u(Bn(s))
B(tni )−B(tni−1)

tni − tni−1
ds

=
n∑
i=1

[
1

tni − tni−1

∫ tni

tni−1

u(Bn(s)) ds] (B(tni )−B(tni−1))

fails to converge to the stochastic integral, simply because

1

tni − tni−1

∫ tni

tni−1

u(Bn(s)) ds =
1

tni − tni−1

∫ tni

tni−1

u(
B(tni−1) (tni − s) +B(tni ) (s− tni−1)

tni − tni−1
) ds

is a (complicated) function of the two random variables B(tni−1) and B(tni ), and cannot be
measurable w.r.t. F(tni−1), for any i = 1, · · · , n.

2
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