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Exercise 1 [Integration by parts] Let B(t) be a d-dimensional standard Brownian motion,
and let X (¢) and Xo(t) be two one-dimensional It6 processes, with

t t
+/ i(s) ds—i—/ ¢i(s)dB(s) for i =1,2.
0 0
Here ¢1(s) and ¢2(s) are two 1 X d matrices (row vectors).
(i) Write the Ité6 formula for the one—dimensional process X;(t) Xs(¢).

SOLUTION

The two—dimensional process X (t) = (X1 (t), X2(t)) is an It6 process, with

1(s) $1(s) >
and s) =
< Pa(s) > #(5) < P2(s)
The It6 formula for the It6 process X (¢) and for the function f(z1,x2) = x1 z2, with

fl(@1,22) = (w2 x1)  and  f(@1,22) = <(1) (1)> ,

1 trace 01 P1(s) #1(s)  d1(s) ¢5(s) .
#4 ffmeel(] ) <¢z(s>¢f(s) ¢2<s>¢;<s>>]d

X0 %00+ [ ' (Xa(s) ¥n(s) + Xa(s) da(s)) ds

+ / (Xa(s) 61(s) + X1 (s) da(s)) dB(s)
0

1 [ 0106 6365) + 0a(5) 615 s
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or in other words

Xl(t) Xg(t) = Xl(O) XQ(O) + /Ot XQ(S) Xm(S) + /Ot Xl(S) dXQ(S)

+3 /0 (D1(s) @5(s) + p2(s) ¢1(s)) ds .

O

Multi—dimensional version: Let B(t) be a d—dimensional standard Brownian motion, and let
X1(t) and Xo(t) be two m—dimensional Itd processes, with

t t
X;(t) = X;(0) + / Yi(s)ds + / ¢i(s)dB(s) for i =1,2.
0 0
Here 91 (s) and ¥9(s) are two m—dimensional vectors, and ¢ (s) and ¢a(s) are two m x d matrices.

(ii) Write the It6 formula for the one—dimensional process X (¢) X2(¢) and for the
m x m matrix—valued process X;(t) X;(t).

[Hint: for the second part, apply the result obtained at question (i) to the two one—dimensional
It6 processes uj X1(t) and ul Xo(t) where u; and ug are two arbitrary vectors in R™.]

SOLUTION

First part (scalar product): The 2m—dimensional process X (t) = (X1(t), X2(t)) is an Itd process,

with o) — <Z;8> and  ¢(s) = (2;8)

The It6 formula for the It6 process X (t) and for the function f(z1,x2) = x7 z2, with

Planm) =@ ) ad  flom) = (] ).

yields

X0 X5 = X100 %00+ [ 56 xie) (110 ) as+ (21 apeo)
L0 1Y (696 G
+4 [ [<I 0) <¢2<s>¢f<s> 6a(s)
= X[ Xa(0)+ [ (X5(6) a(6) + X (5) (s ds
t
+ [ (56 910 + Xi () n() dB(s)
0

4 [ tracelon(9)65(6) + o) 61(5)) s
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or in other words

ﬁ@Xﬁ%=ﬁ®MM®+AXﬂ$MM$+AXH$MM@

44 [ tracefon(s) 6305 + 6n(s) 615 ds

Second part: If u; and ug are m—dimensional vectors, then uj X;(t) and u3 Xs(t) are two one—
dimensional It6 processes, with
t

¢
uf X;(t) = u; X;(0) +/ u; i(s)ds +/ u; ¢i(s) dB(s) fori=1,2.
0 0

Here uj ¢1(s) and uj ¢2(s) are two 1 x d matrices (row vectors). Applying the result obtained
at question (i) yields

ul X1(t) uh Xo(t) = uj X1(0)us Xg(O)-i—/O uy Xo(s) dluj X1(s)] —l—/o uy X1(s) dluz Xa(s)]

t
4 [t 01(5) 3630 + 3 (o) i 05 s

or equivalently, after rearranging terms

t t
ul X1(t) X5(t) ue = uj X1(0) X5(0) U2+/0 ul dX1(s) X5(s) ug—l—/o ul X1(8) dX5(s) uz

t
+Aﬁ%@@@w%,

or in other words
t

mwxmw—xmuwm+£d&@xa@aéxwwm%n

+Am@@@w,

since the vectors u; and uo are arbitrary.

Problem 2 [Burkholder—-Davis—Gundy inequalities] Let B be a one-dimensional stan-
dard Brownian motion, and for any ¢ € M?([0,T]) define

t t
MO = [ 6B M0 = max MO A0 = [l ds.

The objective is to show that for any p > 2, there exist positive constants 0 < ¢, < C), < oo
such that for any 0 <t <T

¢y EJA(P? < EIM. () < Cp E[A(D)PP?

i.e. the moments of a martingale can be controlled in terms of the moments of its increasing
process.



(i) Show that the upper bound holds for p = 2.

[Hint: use the Doob inequality.]

SOLUTION

The Doob inequality for p = 2 provides a uniform control in terms of the terminal value

E[max |M(s)]] < 4 E[M (1),

0<s<t

and the It6 isometry yields

t
BIM(O)F =B [ lo(s)] ds = B{A()]
Combining the two estimates provide a uniform control in terms of the increasing process, i.e.

E[max |M(s)|?] < 4E[A(t)] .

0<s<t

The following boundedness assumption will be used:

there exists a positive K > 0 such that A(T) < K? and |[M(t)] < K forany 0 <t < T.

(ii) Assume that the result holds under the boundedness assumption. Show that
the result can be extended to the general case.

[Hint: for any n > 1, consider the stopping time
T, =inf{0 <t <T : |M(t)] >nor A(t) > n} or =T,
and the stopped martingale defined by M"(¢t) = M (t A 7,,) for any 0 <t < T']

From now on, the boundedness assumption is made.

Upper bound:
(iii) Show that the p—th order moment E|M, ()|’ can be bounded in terms of E|M (¢)|P.

[Hint: use the Doob inequality.]

SOLUTION

It follows from the Doob inequality that
E M(\PTVP < P cminre)pyL/p
(B o [M(s)P [} < P (M @)PY7

or in other words

E|M. ()P = E[ max [M(s)]"] < (-2

PEIM@)P .
Joax, o 1) EIM@)]




(iv) Write the It6 formula for |M(¢)[P. Show that the p—th order moment E|M (t)|P
can be bounded in terms of E[|M,(t)[P~2 A(t)], and further bounded in terms of
E|M,(t)|P and E|A(t)[P/2.

[Hint: for the last part, use the Holder inequality.]

SOLUTION

M(t) = /0 6(s) dB(s)

and for the function g(x) = |z|P, with

fle)=plaf~tsign(x)  and (@) =p(p-1)[z7?,

The It6 formula for the It6 process

yields

M@ =p /0 M ()P sign(M(s)) (s) dB(s) + Lp(p— 1) /0 M ()72 |(s) 2 ds -

Under the boundedness assumption, the integrand s — |M(s)[P~1 sign(M(s)) ¢(s) belongs to
M?2([0,T)), since
T

E/T 1M (s)[P~" sign(M(s)) ¢(s)|* ds < K2 E/ |6(s)P ds < K* < o0,
0 0

and therefore the stochastic integral is a martingale and its expectation is zero. Taking expec-
tation yields

E|M@)P =

D[

(- 1) Ef /0 M ()72 |(s) 2 d

INA
N[

p(r—1)ELmas G [ o)

0<s<t

= 3p(p— D E[[M.(8)["~* A(t)] .
The Holder inequality for conjugate exponents ¢ = p/(p —2) and ¢’ = 3 L p yields

E[| M. ()P~ A()] < {B|M.(0)|" P2} {BIA()7 1

= {E[M.()PP} P {E|A@)PYP
hence
E[M6)F < 3p(p—1) {E|M.()[P} /7 {EJA@®)[P2}7 .
Reporting this inequality in the inequality obtained in question (iii) yields

E|M, ()P < (pf

L E|M ()P

= (pf 1)p 3p(p—1) {E| M, (t)|PY =27 {E|A®t)|P/2}?/P



and collecting all E|M,(¢)|P terms in the left-hand side yields
P12/p P ol p/2\2/p
{E[M.@)P}7P < %9__1) 20 (p— 1) {E[A@)=7,

or equivalently

ENML 0 < [(25) 5ol = )PP EAGP2.

Lower bound: Define

W0=A\M@W*W¢@MB@-

(v) Show that E|Y(£)[2 = - E|A(t)].
b

SOLUTION

Under the boundedness assumption, the integrand s — |A(s)|(P~1/2 ¢(s) belongs to M?([0,T)),

since
T

T
B [ AGP o) ds < KP2E [ oo ds < K7 < oo
0 0
and the It6 isometry yields
T
BV (0P =E [ 1A o(s)ds
On the other hand, the usual chain rule yields
d p p—1 2
CIAWP =p A@P 1602
or, in integrated form
t
AP =p [ 146 o) as
Taking expectation yields

MA@V:PEALMﬂ%”M@F%:PMY@F- o

O

(vi) Using the Ité formula for M(t) |A(t)|P~1/2, get an alternate expression for Y (t)
and show the bound |Y(t)] < 2M,(t)|A(t)|?~)/2, Show that the p-th order
moment E|A(¢)|? can be bounded in terms of E|M,(t)|?’ and E|A(t)|?.



[Hint: for the last part, use the Hélder inequality.]

SOLUTION

Note that the usual chain rule yields

%IA(t)I(” D2 =5 (p— 1) [A@®) P |o(t)

or, in integrated form
t
O 2 = Lo =1) [ A2 o(s) ds
0

The It6 formula (integration by parts) for the two component Itd process

<|A(t];4l(§’t‘)”/2) =201 /Ot < ]A(s)|(P—3?)/2 |¢(5)|2) d'”/ot <¢E)S)) dB(s) ,

yields

M(H) [AW)| P2 = L(p—1) / M(s) |A(5)| P92 |g(s) 2 ds

/rA )e=D/2 o(s) dB(s) |
hence
y(t) = /0 |A()|® D72 g(s) dB(s)

= M) A0 L (p 1) /0 M(s) |A(s)| P92 |g(s) 2 ds |

Note that
V() |A()|PD/2 < ML (1) | APV

and

IN

(-1 /0 M(s) |A(s)| P72 |¢(s) [P ds| < M.(t) 3 (p—1) /0 |A(s)|P=/2 |4(s)[* ds

IN

M, (t) [A@)| P2
and the triangle inequality yields

Y (1)] < 2M.(t) | AP~V
Therefore

E[A®)P = pEY(1)* < 4p E[M.(6)P |A@®)P'] .



The Holder inequality for conjugate exponents ¢ = p/(p — 1) and ¢ = p yields

E( M. () |A@)P] < {BIM. ()P0 {E|A(r)| PPy

= {EIM. ()]} {EJA()[P} 7

hence
E|A(t)|P < 4p {E|M,(t)|P}/? {E|A(t)[PY =17

and collecting all E|A(t)|P terms in the left-hand side yields
{E[A®)[PY? < 4p {EIM.(5)P}7

or equivalently
E[A(t)[P < (4p)” E|M.(t)[* .

Exercice 3 [Exponential bound] Let B be a one-dimensional standard Brownian motion,
and for any ¢ € M?([0,T]) define

M(t) = /0 o(s)dB(s) ,  A(t) = /0 6(s)|2 ds

For any positive A > 0 define
ZMt) = exp{ A M (t) — 3N A(t)} .

In the special case where ¢ = 1, the process M is a Brownian motion, and the process Z* is a
martingale. This was shown using the expression of the Laplace transform of a Gaussian r.v.
and this trick cannot be used in the general case.

(i) Write the Ité formula for Z*(t), show that it is a (local) martingale, hence
E[Z*(t)] <1 for any 0 <t < T.

[Hint: a nonnegative local martingale is a (true) supermartingale.]

SOLUTION

The It6 formula for the It6 process

t t
X(t) = AM(t) - 3 N A(t) = / (=5 A% [6(s)?) ds +/ A¢(s) dB(s) ,
0 0
and for the function f(x) = exp{z}, with

f'(@) = f"(x) = exp{z}



yields

Z)‘(t) = 1+/ Z’\(s) [— %)\2\¢(8)|2d5+)\¢(5) dB(s)]—l—%/ Z)‘(s) >\2|<;5(5:)|2 ds
0 0

(*)
¢
= 1+)\/0 ZM(s) ¢(s) dB(s) .

The integrand s — Z*(s) ¢(s) belongs to M2, only, since

T T
/ 220 (O dt < max |22 (1)) / ()2 dt < oo
0 0

0<t<T

almost surely, for any 7' > 0, and therefore the stochastic integral is only a (nonnegative) local
martingale, and its expectation is not necessarily zero.

However, a nonnegative local martingale is a supermartingale. Indeed, let L be a nonnegative
local martingale, i.e. there exists a non—decreasing sequence of stopping times, such that 7,, 1 oo
almost surely and such that the stopped process defined by L(tAT,) for any ¢ > 0 is a martingale.
Then, for any 0 < s <t and any A € F(s) it holds

E[14 I(Tn > 5) L(s)] =E[14 1(Tn > 5) L(sNT,)] =E[l4 l(Tn > 5) Lt ANm,)],
since AN{7, > s} € F(s). The Lebesgue dominated convergence theorem yields

imE[1g 10, > g L(s)| =E[l4 L(s)] ,

ntoo

and the Fatou lemma yields

lim E[ly 1, > o) LEAT)) 2 Elly liminf[1 5 o LEAT)]] =Ell4 L),

ntoo ntoo n Z

hence

E[l4 L(s)] 2 E[14 L(D)]

for any A € F(s), i.e.
L(s) > E[L(t) | F(s)]

Therefore, the stochastic integral in (x) is a supermartingale and its expectation is smaller than
zero, hence

E[ZMt)] > 1.

d

(ii) Assume that A(t) < Kt for any 0 < t < 7. Show the following exponential
bound: for any positive ¢ > 0

2

P[ max |M(t)] > c] < 2 exp{—

0<t<T 2KT} '



[Hint: use the Chernoff approach to large deviations estimates, and the (easy) inequality

p Pl max X (t) > ] <E[X(0)],

0<t<T
valid for any nonnegative supermartingale.]

SOLUTION

The proof of the inequality for a nonnegative supermartingale follows the same lines as in the
discrete times case. Indeed, let L be a nonnegative supermartingale, and introduce the bounded
stopping time

T=inf{0 <s<t: L(s)>pu},

if such time exists, and 7 = t otherwise.
Note that if OrgaiitL(s) > u, then L(s) > p for some 0 < s < ¢, hence L(7) > p.
<s<

It follows from the optional sampling theorem that

E[L(0)] = E[L(7)]

~ Mt 20 HON Bl 169 <0 £

> pPlmax L(s) > ] ,

0<s<t
hence

" P[Orrg13%<tL(s) > p) < E[L(0)] ,

and the claim is proved.

Note that for any 0 < s <t
AM(s) = AM(s) — 2 N2 A(s) + 5 A2 A(s) S AM(s) — L N2 A(s) + SN2 K ¢t

hence for any positive A > 0

12 12
gxglﬁ;{tM(s)Zc = Orrglﬁéct[AM(s) sATA(S) + 5 MKt > Ace

12 1,2
:>01:r§1?%<t[)\M(s) sATA(S) > Ae—5 A Kt

A 142
m > — 5 .
= Oggth (5) > exp{Ac— 5 A\ Kt}

Therefore

> < As) > _ 142
]P)[OHSI?%{tM(S) >¢] < P[Oliglgth (5) > exp{Ac— 5 A" K t}]

< exp{—)\cﬂ—%)\QKt} )

since Z* is a nonnegative supermartingale with Z*(0) = 1.
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Similarly, note that for any 0 < s <t

A—M(s))=—-AM(s) — 3N A(s) + L X2 A(s) < —AM(s) — LN A(s) + SN2 K ¢t

hence for any positive A > 0

_ > 2 1,2 >
0123%(15( M(s)) c:on<1a§[ AM(s) — 3N A(s)| + 3N Kt > Ac

— — 142 — 142
:>0I£1?%<t[ AM(s) =5 A A(s)]| 2 Aec— 5 AN Kt

-A 142
m > — 5 .
= Oggth (s) > exp{Ac— 5 A\ Kt}

Therefore
P -M >cl <P 7= > _ 12
(g2 (~M(5)) 2 o] < Planax 27(s) 2 exp{he — 3 A Kt}
< exp{-Ac+ 3N Kt},
since Z~ is a nonnegative supermartingale with Z _’\(()) = 1.

Combining the two estimates yields

Plmax [M(s)| 2 ] < P[max M(s) > c] + P[min M(s) < —]

= Plmax M(s) > ] + P[max (—M(s)) = ]

< 2exp{-Ac+ N Kt}.

The bound holds for any positive A > 0, hence it holds also for the minimum over all possible
values of A > 0. The minimum is achieved for A\ = ¢/(Kt) > 0 and the minimum value is
2 exp{—1 /(K t)}, hence

2
P[max |M(s )|>c]<2m1nexp{ Ae+ 3 )\2K}—2exp{—f—

0<s<t 2Kt
(]
(iii) In the general case, show that for any positive ¢, K > 0
2
< — .
Blamax [M(0)] > d <2 {5} + EIA(T) > KT
SOLUTION
Simply
P Mt =P Mt AN < KT|+P Mt A(T KT
[jpax [M(t)] > c] = P{max [M(t)] > ¢, A(T) |+ Pl max [M(t)] > ¢, A(T) > KT
2
<2 — P KT]. g
< 2 exp{~ i) +BIA(T) > KT
O
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Exercise 4 [Feynman—Kac formula] Consider the following linear parabolic PDE

(;L(t,:c) =1 Au(t,z) —c(z) u(t,z) , for any (¢,z) € [0,00) x R?

with initial condition u(0,z) = g(x) for any z € R?. Here, the coefficient c¢(z) is non-negative
and bounded from above, its derivative ¢/(x) is bounded, and the initial condition g(z) together
with its derivative ¢/(x) are bounded. It is assumed that a solution w(¢,z) exists that is C2
with a bounded derivative w.r.t. the space variable.

Fix € R? and let B be a standard d-dimensional Brownian motion starting from B(0) = .

(i) Fix t > 0, and write the Itd formula for
u(t — 5, B(s)) exp{— / (B(r))dr} .
0

[Hint: show that the process

V(s) = exp{— /0 C«(B(r)dr}

is an It process, and write the It6 formula for the (d + 1)-dimensional 1t6 process (B(s), V(s))
and for the time-dependent function f(s,z,v) = u(t — s,z)v.]

SOLUTION

The usual chain rule yields

d
SV =—c(B&) V),

or in integrated form

V(s)=1-— /0 (B(r) V() dr .

Next, the Ito6 formula for the (d + 1)-dimensional It6 process

<€Ez;) - ((1)> +/()S<—C(B(1(~]))V(r)) dr+/os<é> dB(r) ,

and for the time-dependent function f(s,z,v) = u(t — s, z) v, with

of ~ Ou
a(s,x,v) = —a(t —s,x)v
and
0*u ou
Su 92 (t—s,x)v —x(t S, )
f/(S,fI,',’U) = (%(t_‘g?x) v ’U,(t— S,II,')) and f//(S,(I,',’U) =
gZ(t S, ) 0

12



Ot —r B V) =B
St Ox2 ’ Ox ’ I 0 p
—i—/o race| . (0 O)] r
ai(t TaB(T)) 0
) 5 0u
= ui(t,x) — ; a(t—r,B(r)) V(r)dr

- / e(B(r)) ult —r, B(r) V(r) dr

+ ) gz(t —7r,B(r))V(r)dB(r)
0

+3 / Au(t —r,B(r)) V(r)dr
0
Collecting all the ordinary integral terms reduces to
—/ [?;;(t —r,B(r)) — % Au(t —r,B(r)) +c(B(r)u(t —r,B(r)) | V(r)dr =0
0

since
ou

E(S,y) - %Au(s,y) +c(y) uls,y) =0,

for any s > 0 and any y € R?, and the identity holds in particular for s = ¢t —r and for y = B(r).
Therefore

u(t —s,B(s)) V(s) = u(t,z) + /OS %(t —r,B(r))V(r)dB(r) ,

and in particular for s =t it holds

u(t, x) +/0 g:ﬂt(t —r,B(r)V(r)dB(r) =u(0,B(t)) V(t) = g(B(t)) exp{—/o c(B(r))dr} .

g

(ii) Show that
t

u(t, z) = Eox[g(B(t)) exp{- ; c(B(r)) dr}] .

13



(iii) Check a posteriori that the derivative w.r.t. the space variable is bounded.

[Hint: write B(t) = x + By(t) with another standard d-dimensional Brownian motion starting
from Byp(0) = 0.]

Exercise 5 [Wong—Zakai approximation] Let B be a one-dimensional standard Brownian
motion, and let

B, (t) —/0 B (s)ds ,

be an absolutely continuous approximation, such that B, (t) — B(t) almost surely as n 1 oc.
Let f be a twice differentiable function, and let u = f’.

(i) Write the usual chain rule (change of variable formula) for f(B,(t)).

SOLUTION

The usual chain rule yields

d / ;
i (Ba(®) = f'(Bu(t)) Bu(t)

or in integrated form

f(Bn(t)) = f(Bn(0)) + /Ot F'(Bn(s)) Ba(s) ds .

(]
(ii) Write the It6 formula for f(B(t)).
SOLUTION
The It6 formula yields
t t
f(B()) =f(B(0))+/O f'(B(S))dB(S)Jr%/O f'(B(s))ds .
O

(iii) What is the limit as n 1 co of

/ w(Bu(s)) dBo(s) = / w(Bo(s)) Bu(s) ds 7
0 0

14



SOLUTION
Clearly, f(Bn(t)) — f(Bn(0)) = f(B(t)) — f(B(0)), hence

t t t
u S s S S u S S l ’LL/ S S
/0 (Bu(s)) Bu(s)d %/0 (B( >>dB<>+2/0 (B(s))ds .

asn T oo.

As an illustration, one can consider the polygonal approximation

B(ti,) (' —s) + B{t}) (s — ti" )
=t

B, (s) = for any ¢ | < s <t

associated with a convergent partition 0 =t <t} < --- <t =t of [0,¢].

SOLUTION
Clearly
t g B(tr) - B
/0 uBa(9) Bnlo)ds = 3 /t?_l u(Ba(e) = s
- 1 H n n
= Yl [, v (B - B)

fails to converge to the stochastic integral, simply because

1 /t? 1 B B(t) (8 —s) + B(tY) (s —t1y)
el RO TES D=ty g,
th—tly S, =t Jo, =t

is a (complicated) function of the two random variables B(t} ;) and B(t]'), and cannot be
measurable w.r.t. F(t} ), forany i =1,--- ,n.

d
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