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Exercise 1 Let B be a standard Brownian motion. Show that the processes defined by:

• rescaling

X(t) = λB(
t

λ2
) ,

• time inversion

X(t) =


tB(

1

t
) if t > 0 ,

0 if t = 0 ,

• refreshing
X(t) = B(t+ t0)−B(t0) ,

• time reversal
X(t) = B(T − t)−B(T ) , for any 0 ≤ t ≤ T ,

are also standard Brownian motions, i.e. have the same distribution as B.

[Hint for the time inversion case: use the law of large numbers for Brownian motion:
B(u)

u
→ 0,

almost surely as u ↑ ∞.]

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M
and Z defined by

M(t) = B2(t)− t and Z(t) = exp{λB(t)− 1
2 λ

2 t}

are martingales.

Problem 3 [First hitting time for a Brownian motion] Let B be a one–dimensional
standard Brownian motion, with B(0) = 0. For any a > 0, define

Ta = inf{t ≥ 0 : B(t) ≥ a} .

(i) Show that Ta is a stopping time.
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(ii) For any real number λ and any positive t > 0, show that

E[ exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ] = 1 .

[Hint: consider the martingale

Zλ(t) = exp{λB(t)− 1
2 λ

2 t} ,

and use the optional sampling theorem.]

(iii) Taking t ↑ ∞, show that for any positive λ > 0

E[ 1(Ta <∞) exp{λ a− 1
2 λ

2 Ta} ] = 1 .

[Hint: consider separately the event {Ta <∞} and its complement {Ta =∞}.]

(iv) Show that P[Ta < ∞] = 1 and show that the Laplace transform of the (prob-
ability distribution of the) stopping time Ta is given for any positive µ > 0
by

E[ exp{−µTa} ] = exp{−
√

2µ a} .

Remark: The probability density defined by

pa(t) =
a√
2πt3

exp{−a
2

2t
} , for any t > 0,

has Laplace transform exp{−
√

2µ a}. In other words, this is the density of the (probability
distribution of the) stopping time Ta.

Problem 4 [Brownian bridge] Let B be a one–dimensional standard Brownian motion,
with B(0) = 0. Introduce the Brownian bridge as the process Z defined by Z(t) = B(t)− tB(1),
for any 0 ≤ t ≤ 1.

(i) Show that Z is a Gaussian process with zero mean, independent of the random
variable B(1).

(ii) Give the expression of its correlation function, defined as K(t, s) = E[Z(t)Z(s)]
for any 0 ≤ s, t ≤ 1.

(iii) Show that the process Z ′ defined by Z ′(t) = Z(1− t), for any 0 ≤ t ≤ 1, has the
same distribution as the Brownian bridge.

Consider the process Z ′′ defined by Z ′′(t) = (1− t)B(
t

1− t
), for any 0 ≤ t < 1.
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(iv) Show that Z ′′(t)→ 0 almost surely as t→ 1 (and define Z ′′(1) = 0 by continuity).
Show that Z ′′ has the same distribution as the Brownian bridge.

[Hint: use the law of large numbers for Brownian motion:
B(u)

u
→ 0, almost surely as u ↑ ∞.]

(v) Let F be a real–valued bounded continuous mapping defined on the functional
space C([0, 1],R) of all real–valued continuous functions defined on [0, 1]. Show
that

E[F (B) | |B(1)| < ε]→ E[F (Z)] ,

as ε→ 0.

[Hint: Write B as a continuous function of the pair (Z,B(1)).]

Problem 5 [Maximum value of a Brownian bridge] Let B be a one–dimensional standard
Brownian motion, with B(0) = 0. Recall that the Brownian bridge is the process Z defined by
Z(t) = B(t)− tB(1), for any 0 ≤ t ≤ 1. Clearly, Z(0) = Z(1) = 0, and to assess how far away
from zero can the Brownian bridge reach, a natural idea is to introduce the random variable
U = max

0≤t≤1
Z(t) and to let F (a) = P[U < a].

(i) Show that U ≥ 0, and give the expression of F (a) for nonpositive values a ≤ 0.

From now on, it is assumed that a > 0.

(ii) Show that

1− F (a) = P[Z(t) = a, for some 0 < t < 1] = P[B(t)− a t = a, for some t > 0] .

[Hint: introduce the process defined by Z ′′(t) = (1− t)B(
t

1− t
), for any 0 ≤ t < 1.]

For any a > 0, define
Ta = inf{t ≥ 0 : B(t)− a t ≥ a} .

(iii) Show that Ta is a stopping time and that

1− F (a) = P[Ta <∞] .

(iv) For any positive t > 0, show that

E[ exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t))} ] = 1 .

[Hint: consider the martingale

Zλ(t) = exp{λB(t)− 1
2 λ

2 t} ,

for λ = 2 a, and use the optional sampling theorem.]
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(v) Taking t ↑ ∞, show that

E[ 1(Ta <∞) exp{2 aB(Ta)− 2 a2 Ta} ] = 1 .

[Hint: consider separately the event {Ta <∞} and its complement {Ta =∞}.]

(vi) Conclude that
P[Ta <∞] = exp{−2 a2} ,

and give the expression of (i) the cumulative distribution function and (ii) the
probability density function of the random variable U .
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