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Exercise 1 Let B be a standard Brownian motion. Show that the processes defined by:

e rescaling

e lime inversion 1
tB(;) ift>0,
0 ift=0,

e refreshing
X(t) = B(t +to) — B(to) ,

e time reversal

X(t)=B(T—-t)—B(T), forany 0 <t <T,

are also standard Brownian motions, i.e. have the same distribution as B.

B(u)

u

[Hint for the time inversion case: use the law of large numbers for Brownian motion: — 0,

almost surely as u 1 00.]

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M
and Z defined by
M(t) = B%(t) — t and Z(t) = exp{ A B(t) — %)\2 t}
are martingales.
Problem 3 [First hitting time for a Brownian motion] Let B be a one-dimensional

standard Brownian motion, with B(0) = 0. For any a > 0, define

T, =inf{t >0 : B(t) >a} .

(i) Show that T, is a stopping time.



(ii) For any real number A and any positive ¢ > 0, show that
Elexp{AB(T, At) — s\ (T, At)}]=1.
[Hint: consider the martingale
Z(t) = exp{A B(t) — 1 \*t} ,

and use the optional sampling theorem.]

(iii) Taking ¢ T co, show that for any positive A > 0

E[1(7, < o0) exP{Aa— INT, ] =1.
[Hint: consider separately the event {7, < oo} and its complement {7, = co}.]

(iv) Show that P[T, < oo] = 1 and show that the Laplace transform of the (prob-
ability distribution of the) stopping time T, is given for any positive p > 0
by

E[exp{—pTo}] = exp{—+/2pa} .

Remark: The probability density defined by

2

a a
pa(t) = N exp{—ﬂ} , for any t > 0,
T

has Laplace transform exp{—+/2pu a}. In other words, this is the density of the (probability
distribution of the) stopping time 7.

Problem 4 [Brownian bridge] Let B be a one-dimensional standard Brownian motion,
with B(0) = 0. Introduce the Brownian bridge as the process Z defined by Z(t) = B(t) —t B(1),
for any 0 <t < 1.

(i) Show that Z is a Gaussian process with zero mean, independent of the random
variable B(1).

(ii) Give the expression of its correlation function, defined as K(t,s) = E[Z(t) Z(s)]
for any 0 <s,t < 1.

(iii) Show that the process Z’' defined by Z'(t) = Z(1 —t), for any 0 <t < 1, has the
same distribution as the Brownian bridge.

t
Consider the process Z” defined by Z”(t) = (1 —t) B(it), for any 0 <t < 1.

1—



(iv) Show that Z”(t) — 0 almost surely as ¢t — 1 (and define Z”(1) = 0 by continuity).
Show that Z” has the same distribution as the Brownian bridge.

B(u)

[Hint: use the law of large numbers for Brownian motion: — 0, almost surely as u 1 00.]

(v) Let F be a real-valued bounded continuous mapping defined on the functional
space C([0,1],R) of all real-valued continuous functions defined on [0,1]. Show

that
E[F(B) | |B(1)| <e] = E[F(Z2)],

as ¢ — 0.

[Hint: Write B as a continuous function of the pair (Z, B(1)).]

Problem 5 [Maximum value of a Brownian bridge] Let B be a one-dimensional standard
Brownian motion, with B(0) = 0. Recall that the Brownian bridge is the process Z defined by
Z(t) = B(t) —tB(1), for any 0 <t < 1. Clearly, Z(0) = Z(1) = 0, and to assess how far away
from zero can the Brownian bridge reach, a natural idea is to introduce the random variable
U= tmax Z(t) and to let F(a) =P[U < al.

(i) Show that U > 0, and give the expression of F(a) for nonpositive values a < 0.

From now on, it is assumed that a > 0.

(ii) Show that

1— F(a) =P[Z(t) = a, for some 0 <t < 1] =P[B(t) —at = a, for some t > 0] .

t
7t)’ for any 0 <t < 1.]

[Hint: introduce the process defined by Z”(t) = (1 —t) B(1 —

For any a > 0, define
Tp, =inf{t >0 : B(t) —at >a} .

(iii) Show that T, is a stopping time and that
1—F(a)=P[T, < ] .
(iv) For any positive ¢ > 0, show that

E[exp{2a B(T, At) —2a* (T, At)}] =1 .

[Hint: consider the martingale
ZM(t) = exp{\B(t) — Nt} ,

for A = 2a, and use the optional sampling theorem.]



(v) Taking ¢ T co, show that

E[1 ) exp{2a B(T,) —2a*T,}] =1.

T, <0
[Hint: consider separately the event {7, < oo} and its complement {7}, = co}.]

(vi) Conclude that
P[T, < oo] = exp{—2a?} ,

and give the expression of (i) the cumulative distribution function and (ii) the
probability density function of the random variable U.



