INSA Rennes, 4GM–AROM Random Models of Dynamical Systems Introduction to SDE's

TD 1 : Brownian motion and continuous martingales

November 12, 2018

Exercise 1 Let *B* be a standard Brownian motion. Show that the processes defined by:

• rescaling

$$X(t) = \lambda B(\frac{t}{\lambda^2}) ,$$

• time inversion

$$X(t) = \begin{cases} t B(\frac{1}{t}) & \text{if } t > 0 , \\ 0 & \text{if } t = 0 , \end{cases}$$

• refreshing

$$X(t) = B(t + t_0) - B(t_0) ,$$

• time reversal

$$X(t) = B(T - t) - B(T) , \quad \text{for any } 0 \le t \le T ,$$

are also standard Brownian motions, i.e. have the same distribution as B.

[Hint for the *time inversion* case: use the law of large numbers for Brownian motion: $\frac{B(u)}{u} \to 0$, almost surely as $u \uparrow \infty$.]

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M and Z defined by

$$M(t) = B^{2}(t) - t \quad \text{and} \quad Z(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^{2}t\}$$

are martingales.

Problem 3 [First hitting time for a Brownian motion] Let *B* be a one-dimensional standard Brownian motion, with B(0) = 0. For any a > 0, define

$$T_a = \inf\{t \ge 0 : B(t) \ge a\}$$
.

(i) Show that T_a is a stopping time.

(ii) For any real number λ and any positive t > 0, show that

$$\mathbb{E}\left[\exp\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\}\right] = 1 .$$

[Hint: consider the martingale

$$Z^{\lambda}(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^2 t\} ,$$

and use the optional sampling theorem.]

(iii) Taking $t \uparrow \infty$, show that for any positive $\lambda > 0$

$$\mathbb{E}[1_{(T_a < \infty)} \exp\{\lambda a - \frac{1}{2}\lambda^2 T_a\}] = 1.$$

[Hint: consider separately the event $\{T_a < \infty\}$ and its complement $\{T_a = \infty\}$.]

(iv) Show that $\mathbb{P}[T_a < \infty] = 1$ and show that the Laplace transform of the (probability distribution of the) stopping time T_a is given for any positive $\mu > 0$ by

$$\mathbb{E}[\exp\{-\mu T_a\}] = \exp\{-\sqrt{2\mu} a\} .$$

Remark: The probability density defined by

$$p_a(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\{-\frac{a^2}{2t}\}, \quad \text{for any } t > 0,$$

has Laplace transform $\exp\{-\sqrt{2\mu} a\}$. In other words, this is the density of the (probability distribution of the) stopping time T_a .

Problem 4 [Brownian bridge] Let *B* be a one-dimensional standard Brownian motion, with B(0) = 0. Introduce the Brownian bridge as the process *Z* defined by Z(t) = B(t) - t B(1), for any $0 \le t \le 1$.

- (i) Show that Z is a Gaussian process with zero mean, independent of the random variable B(1).
- (ii) Give the expression of its correlation function, defined as $K(t,s) = \mathbb{E}[Z(t) Z(s)]$ for any $0 \le s, t \le 1$.
- (iii) Show that the process Z' defined by Z'(t) = Z(1-t), for any $0 \le t \le 1$, has the same distribution as the Brownian bridge.

Consider the process Z'' defined by $Z''(t) = (1-t) B(\frac{t}{1-t})$, for any $0 \le t < 1$.

(iv) Show that $Z''(t) \to 0$ almost surely as $t \to 1$ (and define Z''(1) = 0 by continuity). Show that Z'' has the same distribution as the Brownian bridge.

[Hint: use the law of large numbers for Brownian motion: $\frac{B(u)}{u} \to 0$, almost surely as $u \uparrow \infty$.]

(v) Let F be a real-valued bounded continuous mapping defined on the functional space $C([0,1],\mathbb{R})$ of all real-valued continuous functions defined on [0,1]. Show that

$$\mathbb{E}[F(B) \mid |B(1)| < \varepsilon] \to \mathbb{E}[F(Z)] ,$$

as $\varepsilon \to 0$.

[Hint: Write B as a continuous function of the pair (Z, B(1)).]

Problem 5 [Maximum value of a Brownian bridge] Let *B* be a one-dimensional standard Brownian motion, with B(0) = 0. Recall that the Brownian bridge is the process *Z* defined by Z(t) = B(t) - t B(1), for any $0 \le t \le 1$. Clearly, Z(0) = Z(1) = 0, and to assess how far away from zero can the Brownian bridge reach, a natural idea is to introduce the random variable $U = \max_{0 \le t \le 1} Z(t)$ and to let $F(a) = \mathbb{P}[U < a]$.

(i) Show that $U \ge 0$, and give the expression of F(a) for nonpositive values $a \le 0$.

From now on, it is assumed that a > 0.

(ii) Show that

$$1 - F(a) = \mathbb{P}[Z(t) = a, \text{ for some } 0 < t < 1] = \mathbb{P}[B(t) - at = a, \text{ for some } t > 0]$$

[Hint: introduce the process defined by $Z''(t) = (1-t) B(\frac{t}{1-t})$, for any $0 \le t < 1$.] For any a > 0, define

$$T_a = \inf\{t \ge 0 : B(t) - at \ge a\}$$
.

(iii) Show that T_a is a stopping time and that

$$1 - F(a) = \mathbb{P}[T_a < \infty] .$$

(iv) For any positive t > 0, show that

$$\mathbb{E}[\exp\{2\,a\,B(T_a \wedge t) - 2\,a^2\,(T_a \wedge t))\}] = 1 \; .$$

[Hint: consider the martingale

$$Z^{\lambda}(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^2 t\},\$$

for $\lambda = 2 a$, and use the optional sampling theorem.]

(v) Taking $t \uparrow \infty$, show that

$$\mathbb{E}[1(T_a < \infty) \, \exp\{2\,a\,B(T_a) - 2\,a^2\,T_a\}] = 1 \; .$$

[Hint: consider separately the event $\{T_a < \infty\}$ and its complement $\{T_a = \infty\}$.]

(vi) Conclude that

$$\mathbb{P}[T_a < \infty] = \exp\{-2a^2\} ,$$

and give the expression of (i) the cumulative distribution function and (ii) the probability density function of the random variable U.