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Exercise 0 [Law of large numbers]

Let B be a standard Brownian motion. Then

B(t)

t
→ 0 ,

almost surely as t ↑ ∞.

Solution

For any t′ ≤ t ≤ t′′, it holds
|B(t)|
t
≤ 1

t′
|B(t)| ,

hence

max
t′≤t≤t′′

|B(t)|
t
≤ 1

t′
max
t′≤t≤t′′

|B(t)| ≤ 1

t′
max

0≤t≤t′′
|B(t)| ,

and the Doob maximal inequality yields

P[ max
t′≤t≤t′′

|B(t)|
t
≥ ε] ≤ P[ max

0≤t≤t′′
|B(t)| ≥ ε t′] ≤ 1

(ε t′)2
E|B(t′′)|2 ≤ t′′

(ε t′)2
.

Taking t′ = 2n and t′′ = 2n+1, it holds

P[ max
2n≤t≤2n+1

|B(t)|
t
≥ ε] ≤ 2n+1

(ε 2n)2
=

1

ε2
2−n+1 ,

and the Borel–Cantelli lemma yields

P[
⋂
p≥0

⋃
n≥p
{ max
2n≤t≤2n+1

|B(t)|
t
≥ ε} ] = 0 ,

or

P[
⋃
p≥0

⋂
n≥p
{ max
2n≤t≤2n+1

|B(t)|
t

< ε} ] = P[
⋃
p≥0
{max
t≥2p

|B(t)|
t

< ε} ]

= P[max
t≥2p

|B(t)|
t

< ε for some p ≥ 0 ]

= P[max
t≥t0

|B(t)|
t

< ε for some t0 ≥ 0 ]

= P[lim sup
t↑∞

|B(t)|
t

< ε ] = 1 ,
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and its is easy to conclude that
B(t)

t
→ 0 almost surely as t ↑ ∞.

A simple change of variable shows that tB(
1

t
)→ 0 almost surely as t ↓ 0.
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Exercise 1 Let B be a standard Brownian motion. Show that the processes defined by:

• rescaling

X(t) = λB(
t

λ2
) ,

• time inversion

X(t) =


tB(

1

t
) if t > 0 ,

0 if t = 0 ,

• refreshing
X(t) = B(t+ t0)−B(t0) ,

• time reversal
X(t) = B(T − t)−B(T ) , for any 0 ≤ t ≤ T ,

are also standard Brownian motions, i.e. have the same distribution as B.

[Hint for the time inversion case: use the law of large numbers for Brownian motion:
B(u)

u
→ 0,

almost surely as u ↑ ∞.]

Solution

It is convenient here to use the following criterion: a process B is a standard Brownian motion
iff B is a zero mean Gaussian process with correlation function

K(s, t) = E[B(t)B(s)] = s ∧ t ,

and almost surely continuous sample paths.

For the rescaling case: Clearly, the process X is Gaussian and has almost surely continuous
sample paths. Moreover

E[X(t)X(s)] = λ2 E[B(
t

λ2
)B(

s

λ2
)]

= λ2 min(
t

λ2
,
s

λ2
)

= min(t, s) .
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For the time inversion case: Note that the mapping u→ 1

u
is decreasing, hence

min(
1

t
,
1

s
) =

1

max(t, s)
,

and

E[X(t)X(s)] = t s E[B(
1

t
)B(

1

s
)]

= t s min(
1

t
,
1

s
)

= max(t, s) min(t, s)
1

max(t, s)

= min(t, s) .

For the refreshing case: Clearly, the process X is Gaussian and has almost surely continuous
sample path. Assuming that 0 ≤ s ≤ t without loss of generality, it holds t0 ≤ t0 + s ≤ t0 + t
hence (B(t0 + t)−B(t0 + s)) and (B(t0 + s)−B(t0)) are independent r.v.’s and

E[X(t)X(s)] = E[(B(t0 + t)−B(t0)) (B(t0 + s)−B(t0))]

= E[(B(t0 + t)−B(t0 + s)) (B(t0 + s)−B(t0))] + E[(B(t0 + s)−B(t0))
2]

= (t0 + s)− t0 = s .

Alternatively, simple expansion yields

E[X(t)X(s)] = E[(B(t0 + t)−B(t0)) (B(t0 + s)−B(t0))]

= E[B(t0 + t)B(t0 + s)]− E[B(t0 + t)B(t0)]− E[B(t0)B(t0 + s)] + E[B2(t0)]

= (t0 + s)− t0 − t0 + t0 = s .

For the time reversal case: Clearly, the process X is Gaussian and has almost surely continuous
sample path. Assuming that 0 ≤ s ≤ t ≤ T without loss of generality, it holds 0 ≤ T − t ≤
T − s ≤ T hence (B(T )−B(T − s)) and (B(T − s)−B(T − t)) are independent r.v.’s and

E[X(t)X(s)] = E[(B(T − t)−B(T )) (B(T − s)−B(T ))]

= E[(B(T )−B(T − t)) (B(T )−B(T − s))]

= E[(B(T )−B(T − s))2] + E[(B(T − s)−B(T − t)) (B(T )−B(T − s))]

= T − (T − s) = s .
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Alternatively, simple expansion yields

E[X(t)X(s)] = E[(B(T − t)−B(T )) (B(T − s)−B(T ))]

= E[B(T − t)B(T − s)]− E[B(T − t)B(T )]− E[B(T )B(T − s)] + E[B2(T )]

= (T − t)− (T − t)− (T − s) + T = s .

2

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M
and Z defined by

M(t) = B2(t)− t and Z(t) = exp{λB(t)− 1
2 λ

2 t}

are martingales.

Solution

For any 0 ≤ s ≤ t, the r.v. (B(t)−B(s)) is zero mean and is independent of F(s), hence

E[B(t) | F(s)]−B(s) = E[B(t)−B(s) | F(s)] = 0 ,

i.e. B is a martingale.

For any 0 ≤ s ≤ t

M(t)−M(s) = (B2(t)−B2(s))− (t− s) = (B(t)−B(s))2 − (t− s) + 2B(s) (B(t)−B(s)) ,

and the r.v. (B(t)−B(s)) is zero mean with variance (t− s) and is independent of F(s), hence

E[M(t) | F(s)]−M(s) = E[M(t)−M(s) | F(s)]

= E[(B(t)−B(s))2 | F(s)]− (t− s) + 2B(s) E[B(t)−B(s) | F(s)] = 0 ,

i.e. M is a martingale.

For any 0 ≤ s ≤ t

Z(t) = exp{λ (B(t)−B(s))} exp{−1
2 λ

2 (t− s)} Z(s) ,

and the r.v. (B(t)−B(s)) is Gaussian, with zero mean and variance (t− s) and is independent
of F(s), hence the Laplace transform

E[exp{λ (B(t)−B(s))} | F(s)] = exp{12 λ
2 (t− s)} ,

and

E[Z(t) | F(s)] = E[exp{λ (B(t)−B(s))} | F(s)] exp{−1
2 λ

2 (t− s)} Z(s) = Z(s) ,

i.e. Z is a martingale.

2
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Problem 3 [First hitting time for a Brownian motion] Let B be a one–dimensional
standard Brownian motion, with B(0) = 0. For any a > 0, define

Ta = inf{t ≥ 0 : B(t) ≥ a} .

(i) Show that Ta is a stopping time.

Solution

By definition, the event {Ta ≤ t} = {B(s) ≥ a for some 0 ≤ s ≤ t} is measurable w.r.t. the
σ–algebra F(t) = σ(B(s) , 0 ≤ s ≤ t), i.e. the random variable Ta is a stopping time.

2

(ii) For any real number λ and any positive t > 0, show that

E[ exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ] = 1 .

[Hint: consider the martingale

Zλ(t) = exp{λB(t)− 1
2 λ

2 t} ,

and use the optional sampling theorem.]

Solution

Introducing the martingale
Zλ(t) = exp{λB(t)− 1

2 λ
2 t} ,

and using the optional sampling theorem with the bounded stopping time Ta ∧ t, yields

E[ exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ] = 1 .

2

(iii) Taking t ↑ ∞, show that for any positive λ > 0

E[ 1(Ta <∞) exp{λ a− 1
2 λ

2 Ta} ] = 1 .

[Hint: consider separately the event {Ta <∞} and its complement {Ta =∞}.]

Solution

Clearly

1(Ta <∞) exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} → 1(Ta <∞) exp{λB(Ta)− 1
2 λ

2 Ta} ,

almost surely as t ↑ ∞, and

1(Ta =∞) exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} = 1(Ta =∞) exp{λB(t)− 1
2 λ

2 t}

= 1(Ta =∞) exp{λ t (
B(t)

t
− 1

2 λ)} → 0 ,
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almost surely as t ↑ ∞. Note that for any 0 ≤ s ≤ Ta (and in particular for s = Ta ∧ t) it holds
B(s) ≤ a, hence for any positive λ > 0

exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ≤ exp{λ a} ,

and convergence holds also in L1, using the Lebesgue dominated convergence theorem. Therefore

1 = E[ exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ]

= E[ 1(Ta <∞) exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ]

+ E[ 1(Ta =∞) exp{λB(Ta ∧ t)− 1
2 λ

2 (Ta ∧ t)} ]

→ E[ 1(Ta <∞) exp{λB(Ta)− 1
2 λ

2 Ta} ] .

Clearly B(Ta) = a, hence

1 = E[ 1(Ta <∞) exp{λB(Ta)− 1
2 λ

2 Ta} ] = E[ 1(Ta <∞) exp{λ a− 1
2 λ

2 Ta} ] ,

or equivalently
E[ 1(Ta <∞) exp{−1

2 λ
2 Ta} ] = exp{−λ a} .

2

(iv) Show that P[Ta < ∞] = 1 and show that the Laplace transform of the (prob-
ability distribution of the) stopping time Ta is given for any positive µ > 0
by

E[ exp{−µTa} ] = exp{−
√

2µ a} .

Solution

Clearly
1(Ta <∞) exp{−1

2 λ
2 Ta} → 1(Ta <∞) ,

almost surely as λ ↓ 0, and note that

1(Ta <∞) exp{−1
2 λ

2 Ta} ≤ 1 ,

and convergence holds also in L1, using the Lebesgue dominated convergence theorem. Therefore

E[ 1(Ta <∞) exp{−1
2 λ

2 Ta} ]→ P[Ta <∞] ,

and
E[ 1(Ta <∞) exp{−1

2 λ
2 Ta} ] = exp{−λ a} → 1 ,

as λ ↓ 0, and uniqueness of the limit yields P[Ta <∞] = 1.

Therefore
E[ exp{−1

2 λ
2 Ta} ] = E[ 1(Ta <∞) exp{−1

2 λ
2 Ta} ] = exp{−λ a} ,

and taking λ =
√

2µ yields

E[ exp{−µTa} ] = exp{−
√

2µ a} .

2
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Remark: The probability density defined by

pa(t) =
a√
2πt3

exp{−a
2

2t
} , for any t > 0,

has Laplace transform exp{−
√

2µ a}. In other words, this is the density of the (probability
distribution of the) stopping time Ta.

(v) Show that the stopping time Ta has the same distribution as the r.v.
a2

X2
where

X is a standard Gaussian r.v.

Solution

Using the change of variable t =
a2

x2
, with dt = 2

a2

x3
dx, it holds

√
t3 =

a3

x3
and

a2

t
= x2 ,

hence

E[φ(Ta)] =

∫ ∞
0

φ(t) pa(t) dt

=

∫ ∞
0

φ(t)
a√
2πt3

exp{−a
2

2t
} dt

=

∫ ∞
0

φ(
a2

x2
)

a x3√
2π a3

exp{−1
2 x

2} 2
a2

x3
dx

= 2
1√
2π

∫ ∞
0

φ(
a2

x2
) exp{−1

2 x
2} dx

=
1√
2π

∫ ∞
−∞

φ(
a2

x2
) exp{−1

2 x
2} dx

= E[φ(
a2

X2
)] ,

for any bounded measurable function φ.

2

Problem 4 [Brownian bridge] Let B be a one–dimensional standard Brownian motion,
with B(0) = 0. Introduce the Brownian bridge as the process Z defined by Z(t) = B(t)− tB(1),
for any 0 ≤ t ≤ 1.

(i) Show that Z is a Gaussian process with zero mean, independent of the random
variable B(1).
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Solution

Clearly
E[Z(t)] = E[B(t)]− tE[B(1)] = 0 ,

for any 0 ≤ t ≤ 1.

For any integer n ≥ 1 and any time instants 0 ≤ t1 < · · · < tn ≤ 1, the vector (Z(t1), · · · , Z(tn))
is a linear transformation of the Gaussian random vector (B(t1), · · · , B(tn), B(1)), hence it is a
Gaussian random vector. This shows that the whole process Z is Gaussian.

Clearly

E[Z(t)B(1)] = E[(B(t)− tB(1))B(1)] = E[B(t)B(1)]− tE[B2(1)] = 0 ,

hence the two Gaussian random variables Z(t) and B(1) are independent, since they have zero
correlation.

2

(ii) Give the expression of its correlation function, defined as K(t, s) = E[Z(t)Z(s)]
for any 0 ≤ s, t ≤ 1.

Solution

By definition

K(t, s) = E[Z(t)Z(s)]

= E[(B(t)− tB(1)) (B(s)− sB(1))]

= E[B(t)B(s)]− sE[B(t)B(1)]− tE[B(s)B(1)] + t sE[B2(1)]

= min(t, s)− s t

= min(t, s)−min(t, s) max(t, s)

= min(t, s) (1−max(t, s)) .

2

(iii) Show that the process Z ′ defined by Z ′(t) = Z(1− t), for any 0 ≤ t ≤ 1, has the
same distribution as the Brownian bridge.

Solution

Note that the mapping u 7→ 1− u is decreasing, hence

min(1− t, 1− s) = 1−max(t, s) and max(1− t, 1− s) = 1−min(t, s) .
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By definition

K ′(t, s) = E[Z ′(t)Z ′(s)]

= E[Z(1− t)Z(1− s)]

= min(1− t, 1− s) (1−max(1− t, 1− s))

= (1−max(t, s)) (1− (1−min(t, s)))

= min(t, s) (1−max(t, s)) .

Clearly, the process Z ′ is Gaussian, has almost surely continuous sample paths, and its corre-
lation function coincides with the correlation function of the Brownian bridge Z. Therefore,
the two processes Z and Z ′ have the same finite–dimensional distributions, hence they have the
same distribution.

2

Consider the process Z ′′ defined by Z ′′(t) = (1− t)B(
t

1− t
), for any 0 ≤ t < 1.

(iv) Show that Z ′′(t)→ 0 almost surely as t→ 1 (and define Z ′′(1) = 0 by continuity).
Show that Z ′′ has the same distribution as the Brownian bridge.

[Hint: use the law of large numbers for Brownian motion:
B(u)

u
→ 0, almost surely as u ↑ ∞.]

Solution

Clearly

Z ′′(t) = (1− t)B(
t

1− t
) = t

B(
t

1− t
)

t

1− t

,

and using the time change u =
t

1− t
, shows that

lim
t→1

B(
t

1− t
)

t

1− t

= lim
u→∞

B(u)

u
= 0 ,

almost surely, hence Z ′′(t)→ 0 almost surely as t→ 1.

Note that the mapping u 7→ u

1− u
is increasing, hence

E[B(
t

1− t
)B(

s

1− s
)] = min(

t

1− t
,

s

1− s
) =

min(t, s)

1−min(t, s)
,
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and

K ′′(t, s) = E[Z ′′(t)Z ′′(s)]

= (1− t) (1− s) E[B(
t

1− t
)B(

s

1− s
)]

= (1−min(t, s)) (1−max(t, s))
min(t, s)

1−min(t, s)

= min(t, s) (1−max(t, s)) .

Clearly, the process Z ′′ is Gaussian, has almost surely continuous sample paths, and its correla-
tion function coincides with the correlation function of the Brownian bridge Z. Therefore, the
two processes Z and Z ′′ have the same finite–dimensional distributions, hence they have the
same distribution.

2

(v) Let F be a real–valued bounded continuous mapping defined on the functional
space C([0, 1],R) of all real–valued continuous functions defined on [0, 1]. Show
that

E[F (B) | |B(1)| < ε]→ E[F (Z)] ,

as ε→ 0.

[Hint: Write B as a continuous function of the pair (Z,B(1)).]

Solution

Let Φ denote the mapping defined on C([0, 1],R)×R and taking values in C([0, 1],R), such that
for any u ∈ C([0, 1],R) and any α ∈ R, the resulting Φ(u, α) ∈ C([0, 1],R) is defined by

Φ(u, α)(t) = u(t) + t α , for any 0 ≤ t ≤ 1.

Clearly Φ is a continuous mapping, and the definition Z(t) = B(t) − tB(1) for any 0 ≤ t ≤ 1
implies B = Φ(Z,B(1)). Therefore

E[F (B) | |B(1)| < ε] = E[F (Φ(Z,B(1))) | |B(1)| < ε]

=
E[F (Φ(Z,B(1))) 1(|B(1)| < ε)]

P[|B(1)| < ε]

Recall that Z and B(1) are independent, and B(1) is a standard Gaussian random variable
(with mean zero and variance unity), hence

E[F (Φ(Z,B(1))) 1(|B(1)| < ε)] =

∫
E[F (Φ(Z, x))] 1(|x| < ε)

1√
2π

exp{−1
2 x

2} dx

=
ε√
2π

∫ 1

−1
E[F (Φ(Z, ε y))] exp{−1

2 ε
2 y2} dy .
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Clearly
F (Φ(Z, ε y)) exp{−1

2 ε
2 y2} → F (Φ(Z, 0)) = F (Z) ,

almost everywhere as ε ↓ 0, hence

1
2

∫ 1

−1
E[F (Φ(Z, ε y))] exp{−1

2 ε
2 y2} dy → E[F (Z)] ,

as ε ↓ 0, using the Lebesgue dominated convergence theorem, and also

1
2

∫ 1

−1
exp{−1

2 ε
2 y2} dy → 1 ,

hence
E[F (B) | |B(1)| < ε]→ E[F (Z)] ,

as ε ↓ 0.

Complement: More generally

E[F (B) 1(B(1) ∈ A)] = E[F (Φ(Z,B(1))) 1(B(1) ∈ A)]

=

∫
A
E[F (Φ(Z, x))]

1√
2π

exp{−1
2 x

2} dx ,

for any Borel subset A, hence

E[F (Φ(Z, x))] = E[F (B) | B(1) = x] ,

for almost every x. Note that

F (φ(Z, x′))→ F (φ(Z, x)) ,

almost surely as x′ → x, and convergence holds also in L1, using the Lebesgue dominated
convergence theorem, i.e.

E[F (Φ(Z, x′))]→ E[F (φ(Z, x))] ,

as x′ → x. In other words, the mapping x 7→ E[F (Φ(Z, x))] is continuous, and E[F (Φ(Z, x))] can
be seen a continuous version of the conditional expectation E[F (B) | B(1) = x]. In particular
for x = 0, it holds

E[F (Z)] = E[F (Φ(Z, 0))] = E[F (B) | B(1) = 0] .

i.e. the distribution of the Brownian bridge Z is the same as the conditional distribution of the
Brownian motion conditioned by taking the value 0 at time 1.

2
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Problem 5 [Maximum value of a Brownian bridge] Let B be a one–dimensional standard
Brownian motion, with B(0) = 0. Recall that the Brownian bridge is the process Z defined by
Z(t) = B(t)− tB(1), for any 0 ≤ t ≤ 1. Clearly, Z(0) = Z(1) = 0, and to assess how far away
from zero can the Brownian bridge reach, a natural idea is to introduce the random variable
U = max

0≤t≤1
Z(t) and to let F (a) = P[U < a].

(i) Show that U ≥ 0, and give the expression of F (a) for nonpositive values a ≤ 0.

Solution

The maximum max
0≤t≤1

Z(t) is larger than any particular value such as Z(0), hence U ≥ 0.

For any nonpositive a ≤ 0, it holds {U < a} ⊆ {U < 0} = ∅, hence F (a) = P[U < a] = 0.

2

From now on, it is assumed that a > 0.

(ii) Show that

1− F (a) = P[Z(t) = a, for some 0 < t < 1] = P[B(t)− a t = a, for some t > 0] .

[Hint: introduce the process defined by Z ′′(t) = (1− t)B(
t

1− t
), for any 0 ≤ t < 1.]

Solution

Clearly, the level a cannot be reached for t = 0 nor for t = 1, since Z(0) = Z(1) = 0, hence

U = max
0≤t≤1

Z(t) = max
0<t<1

Z(t) .

By definition, and using the change of variable s =
t

1− t
(so that t =

s

1 + s
and 1− t =

1

1 + s
),

it holds

1− F (a) = P[ max
0<t<1

Z(t) ≥ a]

= P[Z(t) = a, for some 0 < t < 1]

= P[(1− t)B(
t

1− t
) = a, for some 0 < t < 1]

= P[B(s) = a (1 + s), for some s > 0]

= P[B(s)− a s = a, for some s > 0] .

2

For any a > 0, define
Ta = inf{t ≥ 0 : B(t)− a t ≥ a} .
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(iii) Show that Ta is a stopping time and that

1− F (a) = P[Ta <∞] .

Solution

By definition, the event {Ta ≤ t} = {B(s) − a s ≥ a, for some 0 ≤ s ≤ t} is measurable w.r.t.
the σ–algebra F(t) = σ(B(s) : 0 ≤ s ≤ t), i.e. the random variable Ta is a stopping time.

Using the answer to the previous question yields

P[Ta <∞] = P[B(t)− a t ≥ a, for some t > 0]

= P[B(t)− a t = a, for some t > 0] = 1− F (a) .

2

(iv) For any positive t > 0, show that

E[ exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t))} ] = 1 .

[Hint: consider the martingale

Zλ(t) = exp{λB(t)− 1
2 λ

2 t} ,

for λ = 2 a, and use the optional sampling theorem.]

Solution

Introducing the martingale
Zλ(t) = exp{λB(t)− 1

2 λ
2 t} ,

for λ = 2 a, and using the optional sampling theorem with the bounded stopping time Ta ∧ t,
yields

E[ exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} ] = 1 .

2

(v) Taking t ↑ ∞, show that

E[ 1(Ta <∞) exp{2 aB(Ta)− 2 a2 Ta} ] = 1 .

[Hint: consider separately the event {Ta <∞} and its complement {Ta =∞}.]

Solution

Clearly

1(Ta <∞) exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} → 1(Ta <∞) exp{2 aB(Ta)− 2 a2 Ta} ,
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almost surely as t ↑ ∞, and

1(Ta =∞) exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} = 1(Ta =∞) exp{2 aB(t)− 2 a2 t}

= 1(Ta =∞) exp{2 a t (
B(t)

t
− a)} → 0 ,

almost surely as t ↑ ∞. Note that for any 0 ≤ s ≤ Ta (and in particular for s = Ta ∧ t) it holds
B(s)− a s ≤ a, hence

exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} = exp{2 a (B(Ta ∧ t)− a (Ta ∧ t))} ≤ exp{2 a2} ,

and convergence holds also in L1, using the Lebesgue dominated convergence theorem. Therefore

1 = E[ exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} ]

= E[ 1(Ta <∞) exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} ]

+ E[ 1(Ta =∞) exp{2 aB(Ta ∧ t)− 2 a2 (Ta ∧ t)} ]

→ E[ 1(Ta <∞) exp{2 aB(Ta)− 2 a2 Ta} ] .

2

(vi) Conclude that
P[Ta <∞] = exp{−2 a2} ,

and give the expression of (i) the cumulative distribution function and (ii) the
probability density function of the random variable U .

Solution

Clearly B(Ta)− a Ta = a, hence

1 = E[ 1(Ta <∞) exp{2 aB(Ta)− 2 a2 Ta} ]

= E[ 1(Ta <∞) exp{2a (B(Ta)− a Ta)} ]

= exp{2a2} P[Ta <∞] ,

or in other words
1− F (a) = P[Ta <∞] = exp{−2a2} .

Therefore
P[U < a] = F (a) = 1− exp{−2a2} ,
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and by continuity, the cumulative distribution function is

P[U ≤ a] = 1− exp{−2a2} ,

and the probability density function is just the derivative, i.e.

p(a) = 4 a exp{−2a2} .

2

15


