INSA Rennes, 4GM-AROM

Random Models of Dynamical Systems Introduction to SDE's

TD 1 : Brownian motion and continuous martingales

November 12, 2018

Exercise 0 [Law of large numbers]
Let B be a standard Brownian motion. Then

$$
\frac{B(t)}{t} \rightarrow 0,
$$

almost surely as $t \uparrow \infty$.
\qquad
For any $t^{\prime} \leq t \leq t^{\prime \prime}$, it holds

$$
\frac{|B(t)|}{t} \leq \frac{1}{t^{\prime}}|B(t)|,
$$

hence

$$
\max _{t^{\prime} \leq t \leq t^{\prime \prime}} \frac{|B(t)|}{t} \leq \frac{1}{t^{\prime}} \max _{t^{\prime} \leq t \leq t^{\prime \prime}}|B(t)| \leq \frac{1}{t^{\prime}} \max _{0 \leq t \leq t^{\prime \prime}}|B(t)|,
$$

and the Doob maximal inequality yields

$$
\left.\mathbb{P} \max _{t^{\prime} \leq t \leq t^{\prime \prime}} \frac{|B(t)|}{t} \geq \varepsilon\right] \leq \mathbb{P}\left[\max _{0 \leq t \leq t^{\prime \prime}}|B(t)| \geq \varepsilon t^{\prime}\right] \leq \frac{1}{\left(\varepsilon t^{\prime}\right)^{2}} \mathbb{E}\left|B\left(t^{\prime \prime}\right)\right|^{2} \leq \frac{t^{\prime \prime}}{\left(\varepsilon t^{\prime}\right)^{2}} .
$$

Taking $t^{\prime}=2^{n}$ and $t^{\prime \prime}=2^{n+1}$, it holds

$$
\mathbb{P}\left[_{2^{n} \leq t \leq 2^{n+1}} \frac{|B(t)|}{t} \geq \varepsilon\right] \leq \frac{2^{n+1}}{\left(\varepsilon 2^{n}\right)^{2}}=\frac{1}{\varepsilon^{2}} 2^{-n+1}
$$

and the Borel-Cantelli lemma yields

$$
\mathbb{P}\left[\bigcap_{p \geq 0} \bigcup_{n \geq p}\left\{\max _{2^{n} \leq t \leq 2^{n+1}} \frac{|B(t)|}{t} \geq \varepsilon\right\}\right]=0,
$$

or

$$
\begin{aligned}
\mathbb{P}\left[\bigcup_{p \geq 0} \bigcap_{n \geq p}\left\{\max _{2^{n} \leq t \leq 2^{n+1}} \frac{|B(t)|}{t}<\varepsilon\right\}\right] & =\mathbb{P}\left[\bigcup_{p \geq 0}\left\{\max _{t \geq 2^{p}} \frac{|B(t)|}{t}<\varepsilon\right\}\right] \\
& =\mathbb{P}\left[\max _{t \geq 2^{p}} \frac{|B(t)|}{t}<\varepsilon \text { for some } p \geq 0\right] \\
& =\mathbb{P}\left[\max _{t \geq t_{0}} \frac{|B(t)|}{t}<\varepsilon \text { for some } t_{0} \geq 0\right] \\
& =\mathbb{P}\left[\limsup _{t \uparrow \infty} \frac{|B(t)|}{t}<\varepsilon\right]=1,
\end{aligned}
$$

and its is easy to conclude that $\frac{B(t)}{t} \rightarrow 0$ almost surely as $t \uparrow \infty$.
A simple change of variable shows that $t B\left(\frac{1}{t}\right) \rightarrow 0$ almost surely as $t \downarrow 0$.

Exercise 1 Let B be a standard Brownian motion. Show that the processes defined by:

- rescaling

$$
X(t)=\lambda B\left(\frac{t}{\lambda^{2}}\right),
$$

- time inversion

$$
X(t)= \begin{cases}t B\left(\frac{1}{t}\right) & \text { if } t>0 \\ 0 & \text { if } t=0\end{cases}
$$

- refreshing

$$
X(t)=B\left(t+t_{0}\right)-B\left(t_{0}\right),
$$

- time reversal

$$
X(t)=B(T-t)-B(T), \quad \text { for any } 0 \leq t \leq T,
$$

are also standard Brownian motions, i.e. have the same distribution as B.
[Hint for the time inversion case: use the law of large numbers for Brownian motion: $\frac{B(u)}{u} \rightarrow 0$, almost surely as $u \uparrow \infty$.]
\qquad
It is convenient here to use the following criterion: a process B is a standard Brownian motion iff B is a zero mean Gaussian process with correlation function

$$
K(s, t)=\mathbb{E}[B(t) B(s)]=s \wedge t
$$

and almost surely continuous sample paths.
For the rescaling case: Clearly, the process X is Gaussian and has almost surely continuous sample paths. Moreover

$$
\begin{aligned}
\mathbb{E}[X(t) X(s)] & =\lambda^{2} \mathbb{E}\left[B\left(\frac{t}{\lambda^{2}}\right) B\left(\frac{s}{\lambda^{2}}\right)\right] \\
& =\lambda^{2} \min \left(\frac{t}{\lambda^{2}}, \frac{s}{\lambda^{2}}\right) \\
& =\min (t, s) .
\end{aligned}
$$

For the time inversion case: Note that the mapping $u \rightarrow \frac{1}{u}$ is decreasing, hence

$$
\min \left(\frac{1}{t}, \frac{1}{s}\right)=\frac{1}{\max (t, s)}
$$

and

$$
\begin{aligned}
\mathbb{E}[X(t) X(s)] & =t s \mathbb{E}\left[B\left(\frac{1}{t}\right) B\left(\frac{1}{s}\right)\right] \\
& =t s \min \left(\frac{1}{t}, \frac{1}{s}\right) \\
& =\max (t, s) \min (t, s) \frac{1}{\max (t, s)} \\
& =\min (t, s)
\end{aligned}
$$

For the refreshing case: Clearly, the process X is Gaussian and has almost surely continuous sample path. Assuming that $0 \leq s \leq t$ without loss of generality, it holds $t_{0} \leq t_{0}+s \leq t_{0}+t$ hence $\left(B\left(t_{0}+t\right)-B\left(t_{0}+s\right)\right)$ and $\left(B\left(t_{0}+s\right)-B\left(t_{0}\right)\right)$ are independent r.v.'s and

$$
\begin{aligned}
\mathbb{E}[X(t) X(s)] & =\mathbb{E}\left[\left(B\left(t_{0}+t\right)-B\left(t_{0}\right)\right)\left(B\left(t_{0}+s\right)-B\left(t_{0}\right)\right)\right] \\
& =\mathbb{E}\left[\left(B\left(t_{0}+t\right)-B\left(t_{0}+s\right)\right)\left(B\left(t_{0}+s\right)-B\left(t_{0}\right)\right)\right]+\mathbb{E}\left[\left(B\left(t_{0}+s\right)-B\left(t_{0}\right)\right)^{2}\right] \\
& =\left(t_{0}+s\right)-t_{0}=s
\end{aligned}
$$

Alternatively, simple expansion yields

$$
\begin{aligned}
\mathbb{E}[X(t) X(s)] & =\mathbb{E}\left[\left(B\left(t_{0}+t\right)-B\left(t_{0}\right)\right)\left(B\left(t_{0}+s\right)-B\left(t_{0}\right)\right)\right] \\
& =\mathbb{E}\left[B\left(t_{0}+t\right) B\left(t_{0}+s\right)\right]-\mathbb{E}\left[B\left(t_{0}+t\right) B\left(t_{0}\right)\right]-\mathbb{E}\left[B\left(t_{0}\right) B\left(t_{0}+s\right)\right]+\mathbb{E}\left[B^{2}\left(t_{0}\right)\right] \\
& =\left(t_{0}+s\right)-t_{0}-t_{0}+t_{0}=s
\end{aligned}
$$

For the time reversal case: Clearly, the process X is Gaussian and has almost surely continuous sample path. Assuming that $0 \leq s \leq t \leq T$ without loss of generality, it holds $0 \leq T-t \leq$ $T-s \leq T$ hence $(B(T)-B(T-s))$ and $(B(T-s)-B(T-t))$ are independent r.v.'s and

$$
\begin{aligned}
\mathbb{E}[X(t) X(s)] & =\mathbb{E}[(B(T-t)-B(T))(B(T-s)-B(T))] \\
& =\mathbb{E}[(B(T)-B(T-t))(B(T)-B(T-s))] \\
& =\mathbb{E}\left[(B(T)-B(T-s))^{2}\right]+\mathbb{E}[(B(T-s)-B(T-t))(B(T)-B(T-s))] \\
& =T-(T-s)=s
\end{aligned}
$$

Alternatively, simple expansion yields

$$
\begin{aligned}
\mathbb{E}[X(t) X(s)] & =\mathbb{E}[(B(T-t)-B(T))(B(T-s)-B(T))] \\
& =\mathbb{E}[B(T-t) B(T-s)]-\mathbb{E}[B(T-t) B(T)]-\mathbb{E}[B(T) B(T-s)]+\mathbb{E}\left[B^{2}(T)\right] \\
& =(T-t)-(T-t)-(T-s)+T=s
\end{aligned}
$$

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M and Z defined by

$$
M(t)=B^{2}(t)-t \quad \text { and } \quad Z(t)=\exp \left\{\lambda B(t)-\frac{1}{2} \lambda^{2} t\right\}
$$

are martingales.
\qquad Solution

For any $0 \leq s \leq t$, the r.v. $(B(t)-B(s))$ is zero mean and is independent of $\mathcal{F}(s)$, hence

$$
\mathbb{E}[B(t) \mid \mathcal{F}(s)]-B(s)=\mathbb{E}[B(t)-B(s) \mid \mathcal{F}(s)]=0
$$

i.e. B is a martingale.

For any $0 \leq s \leq t$

$$
M(t)-M(s)=\left(B^{2}(t)-B^{2}(s)\right)-(t-s)=(B(t)-B(s))^{2}-(t-s)+2 B(s)(B(t)-B(s)),
$$

and the r.v. $(B(t)-B(s))$ is zero mean with variance $(t-s)$ and is independent of $\mathcal{F}(s)$, hence

$$
\begin{aligned}
\mathbb{E}[M(t) \mid \mathcal{F}(s)]-M(s) & =\mathbb{E}[M(t)-M(s) \mid \mathcal{F}(s)] \\
& =\mathbb{E}\left[(B(t)-B(s))^{2} \mid \mathcal{F}(s)\right]-(t-s)+2 B(s) \mathbb{E}[B(t)-B(s) \mid \mathcal{F}(s)]=0,
\end{aligned}
$$

i.e. M is a martingale.

For any $0 \leq s \leq t$

$$
Z(t)=\exp \{\lambda(B(t)-B(s))\} \exp \left\{-\frac{1}{2} \lambda^{2}(t-s)\right\} Z(s),
$$

and the r.v. $(B(t)-B(s))$ is Gaussian, with zero mean and variance $(t-s)$ and is independent of $\mathcal{F}(s)$, hence the Laplace transform

$$
\mathbb{E}[\exp \{\lambda(B(t)-B(s))\} \mid \mathcal{F}(s)]=\exp \left\{\frac{1}{2} \lambda^{2}(t-s)\right\}
$$

and

$$
\mathbb{E}[Z(t) \mid \mathcal{F}(s)]=\mathbb{E}[\exp \{\lambda(B(t)-B(s))\} \mid \mathcal{F}(s)] \exp \left\{-\frac{1}{2} \lambda^{2}(t-s)\right\} Z(s)=Z(s),
$$

i.e. Z is a martingale.

Problem 3 [First hitting time for a Brownian motion] Let B be a one-dimensional standard Brownian motion, with $B(0)=0$. For any $a>0$, define

$$
T_{a}=\inf \{t \geq 0: B(t) \geq a\}
$$

(i) Show that T_{a} is a stopping time.

By definition, the event $\left\{T_{a} \leq t\right\}=\{B(s) \geq a$ for some $0 \leq s \leq t\}$ is measurable w.r.t. the σ-algebra $\mathcal{F}(t)=\sigma(B(s), 0 \leq s \leq t)$, i.e. the random variable T_{a} is a stopping time.
(ii) For any real number λ and any positive $t>0$, show that

$$
\mathbb{E}\left[\exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\}\right]=1
$$

[Hint: consider the martingale

$$
Z^{\lambda}(t)=\exp \left\{\lambda B(t)-\frac{1}{2} \lambda^{2} t\right\}
$$

and use the optional sampling theorem.]
\qquad Solution \qquad
Introducing the martingale

$$
Z^{\lambda}(t)=\exp \left\{\lambda B(t)-\frac{1}{2} \lambda^{2} t\right\}
$$

and using the optional sampling theorem with the bounded stopping time $T_{a} \wedge t$, yields

$$
\mathbb{E}\left[\exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\}\right]=1
$$

(iii) Taking $t \uparrow \infty$, show that for any positive $\lambda>0$

$$
\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda a-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]=1
$$

[Hint: consider separately the event $\left\{T_{a}<\infty\right\}$ and its complement $\left\{T_{a}=\infty\right\}$.]
\qquad Solution

Clearly

$$
1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\} \rightarrow 1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda B\left(T_{a}\right)-\frac{1}{2} \lambda^{2} T_{a}\right\}
$$

almost surely as $t \uparrow \infty$, and

$$
\begin{aligned}
1_{\left(T_{a}\right.} & =\infty) \\
& \exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\}=1_{\left(T_{a}=\infty\right)} \exp \left\{\lambda B(t)-\frac{1}{2} \lambda^{2} t\right\} \\
& =1_{\left(T_{a}=\infty\right)} \exp \left\{\lambda t\left(\frac{B(t)}{t}-\frac{1}{2} \lambda\right)\right\} \rightarrow 0
\end{aligned}
$$

almost surely as $t \uparrow \infty$. Note that for any $0 \leq s \leq T_{a}$ (and in particular for $s=T_{a} \wedge t$) it holds $B(s) \leq a$, hence for any positive $\lambda>0$

$$
\exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\} \leq \exp \{\lambda a\}
$$

and convergence holds also in L^{1}, using the Lebesgue dominated convergence theorem. Therefore

$$
\begin{aligned}
1 & =\mathbb{E}\left[\exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\}\right] \\
= & \mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\}\right] \\
& \quad+\mathbb{E}\left[1_{\left(T_{a}=\infty\right)} \exp \left\{\lambda B\left(T_{a} \wedge t\right)-\frac{1}{2} \lambda^{2}\left(T_{a} \wedge t\right)\right\}\right] \\
& \rightarrow \mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda B\left(T_{a}\right)-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]
\end{aligned}
$$

Clearly $B\left(T_{a}\right)=a$, hence

$$
1=\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda B\left(T_{a}\right)-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]=\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{\lambda a-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]
$$

or equivalently

$$
\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]=\exp \{-\lambda a\}
$$

(iv) Show that $\mathbb{P}\left[T_{a}<\infty\right]=1$ and show that the Laplace transform of the (probability distribution of the) stopping time T_{a} is given for any positive $\mu>0$ by

$$
\mathbb{E}\left[\exp \left\{-\mu T_{a}\right\}\right]=\exp \{-\sqrt{2 \mu} a\}
$$

\qquad
\qquad
Clearly

$$
1_{\left(T_{a}<\infty\right)} \exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\} \rightarrow 1_{\left(T_{a}<\infty\right)}
$$

almost surely as $\lambda \downarrow 0$, and note that

$$
1_{\left(T_{a}<\infty\right)} \exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\} \leq 1
$$

and convergence holds also in L^{1}, using the Lebesgue dominated convergence theorem. Therefore

$$
\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\}\right] \rightarrow \mathbb{P}\left[T_{a}<\infty\right]
$$

and

$$
\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]=\exp \{-\lambda a\} \rightarrow 1
$$

as $\lambda \downarrow 0$, and uniqueness of the limit yields $\mathbb{P}\left[T_{a}<\infty\right]=1$.
Therefore

$$
\mathbb{E}\left[\exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]=\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{-\frac{1}{2} \lambda^{2} T_{a}\right\}\right]=\exp \{-\lambda a\}
$$

and taking $\lambda=\sqrt{2 \mu}$ yields

$$
\mathbb{E}\left[\exp \left\{-\mu T_{a}\right\}\right]=\exp \{-\sqrt{2 \mu} a\}
$$

Remark: The probability density defined by

$$
p_{a}(t)=\frac{a}{\sqrt{2 \pi t^{3}}} \exp \left\{-\frac{a^{2}}{2 t}\right\}, \quad \text { for any } t>0
$$

has Laplace transform $\exp \{-\sqrt{2 \mu} a\}$. In other words, this is the density of the (probability distribution of the) stopping time T_{a}.
(v) Show that the stopping time T_{a} has the same distribution as the r.v. $\frac{a^{2}}{X^{2}}$ where X is a standard Gaussian r.v.

Using the change of variable $t=\frac{a^{2}}{x^{2}}$, with $d t=2 \frac{a^{2}}{x^{3}} d x$, it holds

$$
\sqrt{t^{3}}=\frac{a^{3}}{x^{3}} \quad \text { and } \quad \frac{a^{2}}{t}=x^{2}
$$

hence

$$
\begin{aligned}
\mathbb{E}\left[\phi\left(T_{a}\right)\right] & =\int_{0}^{\infty} \phi(t) p_{a}(t) d t \\
& =\int_{0}^{\infty} \phi(t) \frac{a}{\sqrt{2 \pi t^{3}}} \exp \left\{-\frac{a^{2}}{2 t}\right\} d t \\
& =\int_{0}^{\infty} \phi\left(\frac{a^{2}}{x^{2}}\right) \frac{a x^{3}}{\sqrt{2 \pi} a^{3}} \exp \left\{-\frac{1}{2} x^{2}\right\} 2 \frac{a^{2}}{x^{3}} d x \\
& =2 \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \phi\left(\frac{a^{2}}{x^{2}}\right) \exp \left\{-\frac{1}{2} x^{2}\right\} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi\left(\frac{a^{2}}{x^{2}}\right) \exp \left\{-\frac{1}{2} x^{2}\right\} d x \\
& =\mathbb{E}\left[\phi\left(\frac{a^{2}}{X^{2}}\right)\right]
\end{aligned}
$$

for any bounded measurable function ϕ.

Problem 4 [Brownian bridge] Let B be a one-dimensional standard Brownian motion, with $B(0)=0$. Introduce the Brownian bridge as the process Z defined by $Z(t)=B(t)-t B(1)$, for any $0 \leq t \leq 1$.
(i) Show that Z is a Gaussian process with zero mean, independent of the random variable $B(1)$.

Clearly

$$
\mathbb{E}[Z(t)]=\mathbb{E}[B(t)]-t \mathbb{E}[B(1)]=0,
$$

for any $0 \leq t \leq 1$.
For any integer $n \geq 1$ and any time instants $0 \leq t_{1}<\cdots<t_{n} \leq 1$, the vector $\left(Z\left(t_{1}\right), \cdots, Z\left(t_{n}\right)\right)$ is a linear transformation of the Gaussian random vector $\left(B\left(t_{1}\right), \cdots, B\left(t_{n}\right), B(1)\right)$, hence it is a Gaussian random vector. This shows that the whole process Z is Gaussian.
Clearly

$$
\mathbb{E}[Z(t) B(1)]=\mathbb{E}[(B(t)-t B(1)) B(1)]=\mathbb{E}[B(t) B(1)]-t \mathbb{E}\left[B^{2}(1)\right]=0,
$$

hence the two Gaussian random variables $Z(t)$ and $B(1)$ are independent, since they have zero correlation.
(ii) Give the expression of its correlation function, defined as $K(t, s)=\mathbb{E}[Z(t) Z(s)]$ for any $0 \leq s, t \leq 1$.
\qquad
By definition

$$
\begin{aligned}
K(t, s) & =\mathbb{E}[Z(t) Z(s)] \\
& =\mathbb{E}[(B(t)-t B(1))(B(s)-s B(1))] \\
& =\mathbb{E}[B(t) B(s)]-s E[B(t) B(1)]-t \mathbb{E}[B(s) B(1)]+t s \mathbb{E}\left[B^{2}(1)\right] \\
& =\min (t, s)-s t \\
& =\min (t, s)-\min (t, s) \max (t, s) \\
& =\min (t, s)(1-\max (t, s)) .
\end{aligned}
$$

(iii) Show that the process Z^{\prime} defined by $Z^{\prime}(t)=Z(1-t)$, for any $0 \leq t \leq 1$, has the same distribution as the Brownian bridge.
\qquad
Note that the mapping $u \mapsto 1-u$ is decreasing, hence

$$
\min (1-t, 1-s)=1-\max (t, s) \quad \text { and } \quad \max (1-t, 1-s)=1-\min (t, s) .
$$

By definition

$$
\begin{aligned}
K^{\prime}(t, s) & =\mathbb{E}\left[Z^{\prime}(t) Z^{\prime}(s)\right] \\
& =\mathbb{E}[Z(1-t) Z(1-s)] \\
& =\min (1-t, 1-s)(1-\max (1-t, 1-s)) \\
& =(1-\max (t, s))(1-(1-\min (t, s))) \\
& =\min (t, s)(1-\max (t, s))
\end{aligned}
$$

Clearly, the process Z^{\prime} is Gaussian, has almost surely continuous sample paths, and its correlation function coincides with the correlation function of the Brownian bridge Z. Therefore, the two processes Z and Z^{\prime} have the same finite-dimensional distributions, hence they have the same distribution.

Consider the process $Z^{\prime \prime}$ defined by $Z^{\prime \prime}(t)=(1-t) B\left(\frac{t}{1-t}\right)$, for any $0 \leq t<1$.
(iv) Show that $Z^{\prime \prime}(t) \rightarrow 0$ almost surely as $t \rightarrow 1$ (and define $Z^{\prime \prime}(1)=0$ by continuity). Show that $Z^{\prime \prime}$ has the same distribution as the Brownian bridge.
[Hint: use the law of large numbers for Brownian motion: $\frac{B(u)}{u} \rightarrow 0$, almost surely as $u \uparrow \infty$.]
\qquad SOLUTION

Clearly

$$
Z^{\prime \prime}(t)=(1-t) B\left(\frac{t}{1-t}\right)=t \frac{B\left(\frac{t}{1-t}\right)}{\frac{t}{1-t}}
$$

and using the time change $u=\frac{t}{1-t}$, shows that

$$
\lim _{t \rightarrow 1} \frac{B\left(\frac{t}{1-t}\right)}{\frac{t}{1-t}}=\lim _{u \rightarrow \infty} \frac{B(u)}{u}=0
$$

almost surely, hence $Z^{\prime \prime}(t) \rightarrow 0$ almost surely as $t \rightarrow 1$.
Note that the mapping $u \mapsto \frac{u}{1-u}$ is increasing, hence

$$
\mathbb{E}\left[B\left(\frac{t}{1-t}\right) B\left(\frac{s}{1-s}\right)\right]=\min \left(\frac{t}{1-t}, \frac{s}{1-s}\right)=\frac{\min (t, s)}{1-\min (t, s)}
$$

and

$$
\begin{aligned}
K^{\prime \prime}(t, s) & =\mathbb{E}\left[Z^{\prime \prime}(t) Z^{\prime \prime}(s)\right] \\
& =(1-t)(1-s) \mathbb{E}\left[B\left(\frac{t}{1-t}\right) B\left(\frac{s}{1-s}\right)\right] \\
& =(1-\min (t, s))(1-\max (t, s)) \frac{\min (t, s)}{1-\min (t, s)} \\
& =\min (t, s)(1-\max (t, s)) .
\end{aligned}
$$

Clearly, the process $Z^{\prime \prime}$ is Gaussian, has almost surely continuous sample paths, and its correlation function coincides with the correlation function of the Brownian bridge Z. Therefore, the two processes Z and $Z^{\prime \prime}$ have the same finite-dimensional distributions, hence they have the same distribution.
(v) Let F be a real-valued bounded continuous mapping defined on the functional space $C([0,1], \mathbb{R})$ of all real-valued continuous functions defined on $[0,1]$. Show that

$$
\mathbb{E}[F(B)||B(1)|<\varepsilon] \rightarrow \mathbb{E}[F(Z)],
$$

as $\varepsilon \rightarrow 0$.
[Hint: Write B as a continuous function of the pair $(Z, B(1))$.]
\qquad
Solution
Let Φ denote the mapping defined on $C([0,1], \mathbb{R}) \times \mathbb{R}$ and taking values in $C([0,1], \mathbb{R})$, such that for any $u \in C([0,1], \mathbb{R})$ and any $\alpha \in \mathbb{R}$, the resulting $\Phi(u, \alpha) \in C([0,1], \mathbb{R})$ is defined by

$$
\Phi(u, \alpha)(t)=u(t)+t \alpha, \quad \text { for any } 0 \leq t \leq 1 .
$$

Clearly Φ is a continuous mapping, and the definition $Z(t)=B(t)-t B(1)$ for any $0 \leq t \leq 1$ implies $B=\Phi(Z, B(1))$. Therefore

$$
\begin{aligned}
\mathbb{E}[F(B)||B(1)|<\varepsilon] & =\mathbb{E}[F(\Phi(Z, B(1)))| | B(1) \mid<\varepsilon] \\
& =\frac{\mathbb{E}\left[F(\Phi(Z, B(1))) 1_{(|B(1)|<\varepsilon)}\right]}{\mathbb{P}[|B(1)|<\varepsilon]}
\end{aligned}
$$

Recall that Z and $B(1)$ are independent, and $B(1)$ is a standard Gaussian random variable (with mean zero and variance unity), hence

$$
\begin{aligned}
\mathbb{E}\left[F(\Phi(Z, B(1))) 1_{(|B(1)|<\varepsilon)}\right] & =\int \mathbb{E}[F(\Phi(Z, x))] 1_{(|x|<\varepsilon)} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}\right\} d x \\
& =\frac{\varepsilon}{\sqrt{2 \pi}} \int_{-1}^{1} \mathbb{E}[F(\Phi(Z, \varepsilon y))] \exp \left\{-\frac{1}{2} \varepsilon^{2} y^{2}\right\} d y
\end{aligned}
$$

Clearly

$$
F(\Phi(Z, \varepsilon y)) \exp \left\{-\frac{1}{2} \varepsilon^{2} y^{2}\right\} \rightarrow F(\Phi(Z, 0))=F(Z)
$$

almost everywhere as $\varepsilon \downarrow 0$, hence

$$
\frac{1}{2} \int_{-1}^{1} \mathbb{E}[F(\Phi(Z, \varepsilon y))] \exp \left\{-\frac{1}{2} \varepsilon^{2} y^{2}\right\} d y \rightarrow \mathbb{E}[F(Z)]
$$

as $\varepsilon \downarrow 0$, using the Lebesgue dominated convergence theorem, and also

$$
\frac{1}{2} \int_{-1}^{1} \exp \left\{-\frac{1}{2} \varepsilon^{2} y^{2}\right\} d y \rightarrow 1
$$

hence

$$
\mathbb{E}[F(B)||B(1)|<\varepsilon] \rightarrow \mathbb{E}[F(Z)]
$$

as $\varepsilon \downarrow 0$.
Complement: More generally

$$
\begin{aligned}
\mathbb{E}\left[F(B) 1_{(B(1) \in A)}\right] & =\mathbb{E}\left[F(\Phi(Z, B(1))) 1_{(B(1) \in A)}\right] \\
& =\int_{A} \mathbb{E}[F(\Phi(Z, x))] \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}\right\} d x
\end{aligned}
$$

for any Borel subset A, hence

$$
\mathbb{E}[F(\Phi(Z, x))]=\mathbb{E}[F(B) \mid B(1)=x]
$$

for almost every x. Note that

$$
F\left(\phi\left(Z, x^{\prime}\right)\right) \rightarrow F(\phi(Z, x))
$$

almost surely as $x^{\prime} \rightarrow x$, and convergence holds also in L^{1}, using the Lebesgue dominated convergence theorem, i.e.

$$
\mathbb{E}\left[F\left(\Phi\left(Z, x^{\prime}\right)\right)\right] \rightarrow \mathbb{E}[F(\phi(Z, x))]
$$

as $x^{\prime} \rightarrow x$. In other words, the mapping $x \mapsto \mathbb{E}[F(\Phi(Z, x))]$ is continuous, and $\mathbb{E}[F(\Phi(Z, x))]$ can be seen a continuous version of the conditional expectation $\mathbb{E}[F(B) \mid B(1)=x]$. In particular for $x=0$, it holds

$$
\mathbb{E}[F(Z)]=\mathbb{E}[F(\Phi(Z, 0))]=\mathbb{E}[F(B) \mid B(1)=0]
$$

i.e. the distribution of the Brownian bridge Z is the same as the conditional distribution of the Brownian motion conditioned by taking the value 0 at time 1 .

Problem 5 [Maximum value of a Brownian bridge] Let B be a one-dimensional standard Brownian motion, with $B(0)=0$. Recall that the Brownian bridge is the process Z defined by $Z(t)=B(t)-t B(1)$, for any $0 \leq t \leq 1$. Clearly, $Z(0)=Z(1)=0$, and to assess how far away from zero can the Brownian bridge reach, a natural idea is to introduce the random variable $U=\max _{0 \leq t \leq 1} Z(t)$ and to let $F(a)=\mathbb{P}[U<a]$.
(i) Show that $U \geq 0$, and give the expression of $F(a)$ for nonpositive values $a \leq 0$.

The maximum $\max _{0 \leq t \leq 1} Z(t)$ is larger than any particular value such as $Z(0)$, hence $U \geq 0$.
For any nonpositive $a \leq 0$, it holds $\{U<a\} \subseteq\{U<0\}=\emptyset$, hence $F(a)=\mathbb{P}[U<a]=0$.

From now on, it is assumed that $a>0$.

(ii) Show that

$$
1-F(a)=\mathbb{P}[Z(t)=a, \text { for some } 0<t<1]=\mathbb{P}[B(t)-a t=a, \text { for some } t>0] .
$$

[Hint: introduce the process defined by $Z^{\prime \prime}(t)=(1-t) B\left(\frac{t}{1-t}\right)$, for any $0 \leq t<1$.]
\qquad
Clearly, the level a cannot be reached for $t=0$ nor for $t=1$, since $Z(0)=Z(1)=0$, hence

$$
U=\max _{0 \leq t \leq 1} Z(t)=\max _{0<t<1} Z(t) .
$$

By definition, and using the change of variable $s=\frac{t}{1-t}$ (so that $t=\frac{s}{1+s}$ and $1-t=\frac{1}{1+s}$), it holds

$$
\begin{aligned}
1-F(a) & =\mathbb{P}\left[\max _{0<t<1} Z(t) \geq a\right] \\
& =\mathbb{P}[Z(t)=a, \text { for some } 0<t<1] \\
& =\mathbb{P}\left[(1-t) B\left(\frac{t}{1-t}\right)=a, \text { for some } 0<t<1\right] \\
& =\mathbb{P}[B(s)=a(1+s), \text { for some } s>0] \\
& =\mathbb{P}[B(s)-a s=a, \text { for some } s>0] .
\end{aligned}
$$

For any $a>0$, define

$$
T_{a}=\inf \{t \geq 0: B(t)-a t \geq a\} .
$$

(iii) Show that T_{a} is a stopping time and that

$$
1-F(a)=\mathbb{P}\left[T_{a}<\infty\right]
$$

\qquad
By definition, the event $\left\{T_{a} \leq t\right\}=\{B(s)-a s \geq a$, for some $0 \leq s \leq t\}$ is measurable w.r.t. the σ-algebra $\mathcal{F}(t)=\sigma(B(s): 0 \leq s \leq t)$, i.e. the random variable T_{a} is a stopping time.
Using the answer to the previous question yields

$$
\begin{aligned}
\mathbb{P}\left[T_{a}<\infty\right] & =\mathbb{P}[B(t)-a t \geq a, \text { for some } t>0] \\
& =\mathbb{P}[B(t)-a t=a, \text { for some } t>0]=1-F(a) .
\end{aligned}
$$

(iv) For any positive $t>0$, show that

$$
\left.\mathbb{E}\left[\exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right)\right\}\right]=1
$$

[Hint: consider the martingale

$$
Z^{\lambda}(t)=\exp \left\{\lambda B(t)-\frac{1}{2} \lambda^{2} t\right\},
$$

for $\lambda=2 a$, and use the optional sampling theorem.]
\qquad Solution \qquad
Introducing the martingale

$$
Z^{\lambda}(t)=\exp \left\{\lambda B(t)-\frac{1}{2} \lambda^{2} t\right\},
$$

for $\lambda=2 a$, and using the optional sampling theorem with the bounded stopping time $T_{a} \wedge t$, yields

$$
\mathbb{E}\left[\exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\}\right]=1
$$

(v) Taking $t \uparrow \infty$, show that

$$
\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{2 a B\left(T_{a}\right)-2 a^{2} T_{a}\right\}\right]=1
$$

[Hint: consider separately the event $\left\{T_{a}<\infty\right\}$ and its complement $\left\{T_{a}=\infty\right\}$.]
\qquad
\qquad
Clearly

$$
1_{\left(T_{a}<\infty\right)} \exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\} \rightarrow 1_{\left(T_{a}<\infty\right)} \exp \left\{2 a B\left(T_{a}\right)-2 a^{2} T_{a}\right\}
$$

almost surely as $t \uparrow \infty$, and

$$
\begin{aligned}
& \left.1_{\left(T_{a}\right.}=\infty\right) \exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\}=1_{\left(T_{a}=\infty\right)} \exp \left\{2 a B(t)-2 a^{2} t\right\} \\
& \quad=1_{\left(T_{a}=\infty\right)} \exp \left\{2 a t\left(\frac{B(t)}{t}-a\right)\right\} \rightarrow 0
\end{aligned}
$$

almost surely as $t \uparrow \infty$. Note that for any $0 \leq s \leq T_{a}$ (and in particular for $s=T_{a} \wedge t$) it holds $B(s)-a s \leq a$, hence

$$
\exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\}=\exp \left\{2 a\left(B\left(T_{a} \wedge t\right)-a\left(T_{a} \wedge t\right)\right)\right\} \leq \exp \left\{2 a^{2}\right\}
$$

and convergence holds also in L^{1}, using the Lebesgue dominated convergence theorem. Therefore

$$
\begin{aligned}
1 & =\mathbb{E}\left[\exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\}\right] \\
= & \mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\}\right] \\
& \quad+\mathbb{E}\left[1_{\left(T_{a}=\infty\right)} \exp \left\{2 a B\left(T_{a} \wedge t\right)-2 a^{2}\left(T_{a} \wedge t\right)\right\}\right] \\
& \rightarrow \mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{2 a B\left(T_{a}\right)-2 a^{2} T_{a}\right\}\right]
\end{aligned}
$$

(vi) Conclude that

$$
\mathbb{P}\left[T_{a}<\infty\right]=\exp \left\{-2 a^{2}\right\}
$$

and give the expression of (i) the cumulative distribution function and (ii) the probability density function of the random variable U.
\qquad
Clearly $B\left(T_{a}\right)-a T_{a}=a$, hence

$$
\begin{aligned}
1 & =\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{2 a B\left(T_{a}\right)-2 a^{2} T_{a}\right\}\right] \\
& =\mathbb{E}\left[1_{\left(T_{a}<\infty\right)} \exp \left\{2 a\left(B\left(T_{a}\right)-a T_{a}\right)\right\}\right] \\
& =\exp \left\{2 a^{2}\right\} \mathbb{P}\left[T_{a}<\infty\right]
\end{aligned}
$$

or in other words

$$
1-F(a)=\mathbb{P}\left[T_{a}<\infty\right]=\exp \left\{-2 a^{2}\right\}
$$

Therefore

$$
\mathbb{P}[U<a]=F(a)=1-\exp \left\{-2 a^{2}\right\}
$$

and by continuity, the cumulative distribution function is

$$
\mathbb{P}[U \leq a]=1-\exp \left\{-2 a^{2}\right\},
$$

and the probability density function is just the derivative, i.e.

$$
p(a)=4 a \exp \left\{-2 a^{2}\right\} .
$$

