INSA Rennes, 4GM–AROM

Random Models of Dynamical Systems Introduction to SDE's

TD 1 : Brownian motion and continuous martingales

November 12, 2018

Exercise 0 [Law of large numbers]

Let B be a standard Brownian motion. Then

$$\frac{B(t)}{t} \to 0 \; ,$$

almost surely as $t \uparrow \infty$.

_ Solution _____

For any $t' \leq t \leq t''$, it holds

$$\frac{|B(t)|}{t} \leq \frac{1}{t'} |B(t)| \ ,$$

hence

$$\max_{t' \le t \le t''} \frac{|B(t)|}{t} \le \frac{1}{t'} \max_{t' \le t \le t''} |B(t)| \le \frac{1}{t'} \max_{0 \le t \le t''} |B(t)| ,$$

and the Doob maximal inequality yields

$$\mathbb{P}[\max_{t' \le t \le t''} \frac{|B(t)|}{t} \ge \varepsilon] \le \mathbb{P}[\max_{0 \le t \le t''} |B(t)| \ge \varepsilon t'] \le \frac{1}{(\varepsilon t')^2} \mathbb{E}|B(t'')|^2 \le \frac{t''}{(\varepsilon t')^2} .$$

Taking $t' = 2^n$ and $t'' = 2^{n+1}$, it holds

$$\mathbb{P}[\max_{2^{n} \le t \le 2^{n+1}} \frac{|B(t)|}{t} \ge \varepsilon] \le \frac{2^{n+1}}{(\varepsilon 2^{n})^2} = \frac{1}{\varepsilon^2} \ 2^{-n+1} ,$$

and the Borel–Cantelli lemma yields

$$\mathbb{P}\left[\bigcap_{p\geq 0}\bigcup_{n\geq p}\left\{\max_{2^n\leq t\leq 2^{n+1}}\frac{|B(t)|}{t}\geq \varepsilon\right\}\right]=0 ,$$

or

$$\begin{split} \mathbb{P}[\bigcup_{p\geq 0} \bigcap_{n\geq p} \{\max_{2^n\leq t\leq 2^{n+1}} \frac{|B(t)|}{t} < \varepsilon\}] &= \mathbb{P}[\bigcup_{p\geq 0} \{\max_{t\geq 2^p} \frac{|B(t)|}{t} < \varepsilon\}] \\ &= \mathbb{P}[\max_{t\geq 2^p} \frac{|B(t)|}{t} < \varepsilon \text{ for some } p\geq 0] \\ &= \mathbb{P}[\max_{t\geq t_0} \frac{|B(t)|}{t} < \varepsilon \text{ for some } t_0 \geq 0] \\ &= \mathbb{P}[\limsup_{t\uparrow\infty} \frac{|B(t)|}{t} < \varepsilon \text{ for some } t_0 \geq 0] \end{split}$$

and its is easy to conclude that $\frac{B(t)}{t} \to 0$ almost surely as $t \uparrow \infty$. A simple change of variable shows that $t B(\frac{1}{t}) \to 0$ almost surely as $t \downarrow 0$.

Exercise 1 Let *B* be a standard Brownian motion. Show that the processes defined by:

• rescaling

$$X(t) = \lambda B(\frac{t}{\lambda^2}) ,$$

• time inversion

$$X(t) = \begin{cases} t B(\frac{1}{t}) & \text{if } t > 0 \\ 0 & \text{if } t = 0 \end{cases},$$

• refreshing

$$X(t) = B(t + t_0) - B(t_0) ,$$

• time reversal

$$X(t) = B(T - t) - B(T) , \quad \text{for any } 0 \le t \le T ,$$

are also standard Brownian motions, i.e. have the same distribution as B.

[Hint for the *time inversion* case: use the law of large numbers for Brownian motion: $\frac{B(u)}{u} \to 0$, almost surely as $u \uparrow \infty$.]

 $_$ Solution $_$

It is convenient here to use the following criterion: a process B is a standard Brownian motion iff B is a zero mean Gaussian process with correlation function

$$K(s,t) = \mathbb{E}[B(t) B(s)] = s \wedge t ,$$

and almost surely continuous sample paths.

For the *rescaling* case: Clearly, the process X is Gaussian and has almost surely continuous sample paths. Moreover

$$\mathbb{E}[X(t) X(s)] = \lambda^2 \mathbb{E}[B(\frac{t}{\lambda^2}) B(\frac{s}{\lambda^2})]$$
$$= \lambda^2 \min(\frac{t}{\lambda^2}, \frac{s}{\lambda^2})$$
$$= \min(t, s) .$$

For the *time inversion* case: Note that the mapping $u \to \frac{1}{u}$ is decreasing, hence

$$\min(\frac{1}{t}, \frac{1}{s}) = \frac{1}{\max(t, s)} ,$$

and

$$\mathbb{E}[X(t) X(s)] = t s \mathbb{E}[B(\frac{1}{t}) B(\frac{1}{s})]$$
$$= t s \min(\frac{1}{t}, \frac{1}{s})$$
$$= \max(t, s) \min(t, s) \frac{1}{\max(t, s)}$$
$$= \min(t, s) .$$

For the *refreshing* case: Clearly, the process X is Gaussian and has almost surely continuous sample path. Assuming that $0 \le s \le t$ without loss of generality, it holds $t_0 \le t_0 + s \le t_0 + t$ hence $(B(t_0 + t) - B(t_0 + s))$ and $(B(t_0 + s) - B(t_0))$ are independent r.v.'s and

$$\mathbb{E}[X(t) X(s)] = \mathbb{E}[(B(t_0 + t) - B(t_0)) (B(t_0 + s) - B(t_0))]$$

= $\mathbb{E}[(B(t_0 + t) - B(t_0 + s)) (B(t_0 + s) - B(t_0))] + \mathbb{E}[(B(t_0 + s) - B(t_0))^2]$
= $(t_0 + s) - t_0 = s$.

Alternatively, simple expansion yields

$$\mathbb{E}[X(t) X(s)] = \mathbb{E}[(B(t_0 + t) - B(t_0)) (B(t_0 + s) - B(t_0))]$$

= $\mathbb{E}[B(t_0 + t) B(t_0 + s)] - \mathbb{E}[B(t_0 + t) B(t_0)] - \mathbb{E}[B(t_0) B(t_0 + s)] + \mathbb{E}[B^2(t_0)]$
= $(t_0 + s) - t_0 - t_0 + t_0 = s$.

For the time reversal case: Clearly, the process X is Gaussian and has almost surely continuous sample path. Assuming that $0 \le s \le t \le T$ without loss of generality, it holds $0 \le T - t \le T - s \le T$ hence (B(T) - B(T - s)) and (B(T - s) - B(T - t)) are independent r.v.'s and

$$\mathbb{E}[X(t) X(s)] = \mathbb{E}[(B(T-t) - B(T)) (B(T-s) - B(T))]$$

= $\mathbb{E}[(B(T) - B(T-t)) (B(T) - B(T-s))]$
= $\mathbb{E}[(B(T) - B(T-s))^2] + \mathbb{E}[(B(T-s) - B(T-t)) (B(T) - B(T-s))]$
= $T - (T-s) = s$.

Alternatively, simple expansion yields

$$\mathbb{E}[X(t) X(s)] = \mathbb{E}[(B(T-t) - B(T)) (B(T-s) - B(T))]$$

= $\mathbb{E}[B(T-t) B(T-s)] - \mathbb{E}[B(T-t) B(T)] - \mathbb{E}[B(T) B(T-s)] + \mathbb{E}[B^2(T)]$
= $(T-t) - (T-t) - (T-s) + T = s$.

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M and Z defined by

$$M(t) = B^{2}(t) - t$$
 and $Z(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^{2}t\}$

are martingales.

_____ Solution _____

For any $0 \le s \le t$, the r.v. (B(t) - B(s)) is zero mean and is independent of $\mathcal{F}(s)$, hence

$$\mathbb{E}[B(t) \mid \mathcal{F}(s)] - B(s) = \mathbb{E}[B(t) - B(s) \mid \mathcal{F}(s)] = 0 ,$$

i.e. B is a martingale.

For any $0 \le s \le t$

$$M(t) - M(s) = (B^{2}(t) - B^{2}(s)) - (t - s) = (B(t) - B(s))^{2} - (t - s) + 2B(s) (B(t) - B(s)),$$

and the r.v. (B(t) - B(s)) is zero mean with variance (t - s) and is independent of $\mathcal{F}(s)$, hence $\mathbb{E}[M(t) \mid \mathcal{F}(s)] - M(s) = \mathbb{E}[M(t) - M(s) \mid \mathcal{F}(s)]$ $= \mathbb{E}[(B(t) - B(s))^2 \mid \mathcal{F}(s)] - (t - s) + 2B(s) \mathbb{E}[B(t) - B(s) \mid \mathcal{F}(s)] = 0,$

i.e. M is a martingale.

For any $0 \le s \le t$

$$Z(t) = \exp\{\lambda \left(B(t) - B(s)\right)\} \exp\{-\frac{1}{2}\lambda^2 \left(t - s\right)\} Z(s) ,$$

and the r.v. (B(t) - B(s)) is Gaussian, with zero mean and variance (t - s) and is independent of $\mathcal{F}(s)$, hence the Laplace transform

$$\mathbb{E}[\exp\{\lambda \left(B(t) - B(s)\right)\} \mid \mathcal{F}(s)] = \exp\{\frac{1}{2}\lambda^2 \left(t - s\right)\},\$$

and

$$\mathbb{E}[Z(t) \mid \mathcal{F}(s)] = \mathbb{E}[\exp\{\lambda \left(B(t) - B(s)\right)\} \mid \mathcal{F}(s)] \exp\{-\frac{1}{2}\lambda^2 \left(t - s\right)\} Z(s) = Z(s) ,$$

i.e. Z is a martingale.

Problem 3 [First hitting time for a Brownian motion] Let *B* be a one-dimensional standard Brownian motion, with B(0) = 0. For any a > 0, define

$$T_a = \inf\{t \ge 0 : B(t) \ge a\}$$
.

(i) Show that T_a is a stopping time.

__ Solution _____

By definition, the event $\{T_a \leq t\} = \{B(s) \geq a \text{ for some } 0 \leq s \leq t\}$ is measurable w.r.t. the σ -algebra $\mathcal{F}(t) = \sigma(B(s), 0 \leq s \leq t)$, i.e. the random variable T_a is a stopping time.

(ii) For any real number λ and any positive t > 0, show that

$$\mathbb{E}\left[\exp\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\}\right] = 1$$

[Hint: consider the martingale

$$Z^{\lambda}(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^2 t\},\$$

and use the optional sampling theorem.]

_____ Solution _____

Introducing the martingale

$$Z^{\lambda}(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^2 t\} ,$$

and using the optional sampling theorem with the bounded stopping time $T_a \wedge t$, yields

$$\mathbb{E}\left[\exp\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\}\right] = 1$$

(iii) Taking $t \uparrow \infty$, show that for any positive $\lambda > 0$

$$\mathbb{E}[1_{(T_a < \infty)} \exp\{\lambda a - \frac{1}{2}\lambda^2 T_a\}] = 1.$$

[Hint: consider separately the event $\{T_a < \infty\}$ and its complement $\{T_a = \infty\}$.]

_____ Solution _____

Clearly

$${}^{1}(T_{a} < \infty) \exp\{\lambda B(T_{a} \wedge t) - \frac{1}{2}\lambda^{2}(T_{a} \wedge t)\} \rightarrow {}^{1}(T_{a} < \infty) \exp\{\lambda B(T_{a}) - \frac{1}{2}\lambda^{2}T_{a}\},\$$

almost surely as $t \uparrow \infty$, and

$$\begin{split} ^{1}(T_{a} = \infty) & \exp\{\lambda \, B(T_{a} \wedge t) - \frac{1}{2} \, \lambda^{2} \, (T_{a} \wedge t)\} = \mathbbm{1}_{\left(T_{a} = \infty\right)} \, \exp\{\lambda \, B(t) - \frac{1}{2} \, \lambda^{2} \, t\} \\ & = \mathbbm{1}_{\left(T_{a} = \infty\right)} \, \exp\{\lambda \, t \, (\frac{B(t)}{t} - \frac{1}{2} \, \lambda)\} \to 0 \ , \end{split}$$

almost surely as $t \uparrow \infty$. Note that for any $0 \le s \le T_a$ (and in particular for $s = T_a \land t$) it holds $B(s) \le a$, hence for any positive $\lambda > 0$

$$\exp\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\} \le \exp\{\lambda a\} ,$$

and convergence holds also in L^1 , using the Lebesgue dominated convergence theorem. Therefore

$$1 = \mathbb{E}\left[\exp\left\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\right\}\right]$$

$$= \mathbb{E}[1_{(T_a < \infty)} \exp\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\}]$$

+ $\mathbb{E}[1_{(T_a = \infty)} \exp\{\lambda B(T_a \wedge t) - \frac{1}{2}\lambda^2 (T_a \wedge t)\}]$
 $\rightarrow \mathbb{E}[1_{(T_a < \infty)} \exp\{\lambda B(T_a) - \frac{1}{2}\lambda^2 T_a\}].$

Clearly $B(T_a) = a$, hence

$$1 = \mathbb{E}[1(T_a < \infty) \exp\{\lambda B(T_a) - \frac{1}{2}\lambda^2 T_a\}] = \mathbb{E}[1(T_a < \infty) \exp\{\lambda a - \frac{1}{2}\lambda^2 T_a\}],$$

or equivalently

$$\mathbb{E}[1_{(T_a < \infty)} \exp\{-\frac{1}{2}\lambda^2 T_a\}] = \exp\{-\lambda a\}.$$

(iv) Show that $\mathbb{P}[T_a < \infty] = 1$ and show that the Laplace transform of the (probability distribution of the) stopping time T_a is given for any positive $\mu > 0$ by

$$\mathbb{E}[\exp\{-\mu T_a\}] = \exp\{-\sqrt{2\mu} a\} .$$

 $_$ Solution $_$

Clearly

$$1(T_a < \infty) \exp\{-\frac{1}{2}\lambda^2 T_a\} \to 1(T_a < \infty)$$

almost surely as $\lambda \downarrow 0$, and note that

$$^{1}(T_{a} < \infty) \exp\{-\frac{1}{2}\lambda^{2}T_{a}\} \le 1$$

and convergence holds also in L^1 , using the Lebesgue dominated convergence theorem. Therefore

$$\mathbb{E}[1(T_a < \infty) \exp\{-\frac{1}{2}\lambda^2 T_a\}] \to \mathbb{P}[T_a < \infty] ,$$

and

$$\mathbb{E}[1(T_a < \infty) \exp\{-\frac{1}{2}\lambda^2 T_a\}] = \exp\{-\lambda a\} \to 1 ,$$

as $\lambda \downarrow 0$, and uniqueness of the limit yields $\mathbb{P}[T_a < \infty] = 1$. Therefore

$$\mathbb{E}[\exp\{-\frac{1}{2}\lambda^2 T_a\}] = \mathbb{E}[1_{(T_a < \infty)} \exp\{-\frac{1}{2}\lambda^2 T_a\}] = \exp\{-\lambda a\},$$

and taking $\lambda = \sqrt{2 \mu}$ yields

$$\mathbb{E}[\exp\{-\mu T_a\}] = \exp\{-\sqrt{2\mu} a\}.$$

Remark: The probability density defined by

$$p_a(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\{-\frac{a^2}{2t}\}$$
, for any $t > 0$,

has Laplace transform $\exp\{-\sqrt{2\mu} a\}$. In other words, this is the density of the (probability distribution of the) stopping time T_a .

(v) Show that the stopping time T_a has the same distribution as the r.v. $\frac{a^2}{X^2}$ where X is a standard Gaussian r.v.

 $\label{eq:Solution} \underbrace{ \text{Solution}}_{\text{Using the change of variable } t = \frac{a^2}{x^2}, \text{ with } dt = 2 \, \frac{a^2}{x^3} \, dx, \text{ it holds} \\ \sqrt{t^3} = \frac{a^3}{x^3} \qquad \text{and} \qquad \frac{a^2}{t} = x^2 \ ,$

hence

$$\begin{split} \mathbb{E}[\phi(T_a)] &= \int_0^\infty \phi(t) \ p_a(t) \ dt \\ &= \int_0^\infty \phi(t) \ \frac{a}{\sqrt{2\pi t^3}} \ \exp\{-\frac{a^2}{2t}\} \ dt \\ &= \int_0^\infty \phi(\frac{a^2}{x^2}) \ \frac{a x^3}{\sqrt{2\pi} a^3} \ \exp\{-\frac{1}{2} x^2\} \ 2 \ \frac{a^2}{x^3} \ dx \\ &= 2 \ \frac{1}{\sqrt{2\pi}} \ \int_0^\infty \phi(\frac{a^2}{x^2}) \ \exp\{-\frac{1}{2} x^2\} \ dx \\ &= \frac{1}{\sqrt{2\pi}} \ \int_{-\infty}^\infty \phi(\frac{a^2}{x^2}) \ \exp\{-\frac{1}{2} x^2\} \ dx \\ &= \mathbb{E}[\phi(\frac{a^2}{X^2})] \ , \end{split}$$

for any bounded measurable function ϕ .

Problem 4 [Brownian bridge] Let *B* be a one-dimensional standard Brownian motion, with B(0) = 0. Introduce the Brownian bridge as the process *Z* defined by Z(t) = B(t) - t B(1), for any $0 \le t \le 1$.

(i) Show that Z is a Gaussian process with zero mean, independent of the random variable B(1).

SOLUTION _

Clearly

$$\mathbb{E}[Z(t)] = \mathbb{E}[B(t)] - t \mathbb{E}[B(1)] = 0 ,$$

for any $0 \le t \le 1$.

For any integer $n \ge 1$ and any time instants $0 \le t_1 < \cdots < t_n \le 1$, the vector $(Z(t_1), \cdots, Z(t_n))$ is a linear transformation of the Gaussian random vector $(B(t_1), \cdots, B(t_n), B(1))$, hence it is a Gaussian random vector. This shows that the whole process Z is Gaussian.

Clearly

$$\mathbb{E}[Z(t) B(1)] = \mathbb{E}[(B(t) - t B(1)) B(1)] = \mathbb{E}[B(t) B(1)] - t \mathbb{E}[B^2(1)] = 0,$$

hence the two Gaussian random variables Z(t) and B(1) are independent, since they have zero correlation.

(ii) Give the expression of its correlation function, defined as $K(t,s) = \mathbb{E}[Z(t) Z(s)]$ for any $0 \le s, t \le 1$.

By definition

$$\begin{aligned} K(t,s) &= \mathbb{E}[Z(t) \, Z(s)] \\ &= \mathbb{E}[(B(t) - t \, B(1)) \, (B(s) - s \, B(1))] \\ &= \mathbb{E}[B(t) \, B(s)] - s \, E[B(t) \, B(1)] - t \, \mathbb{E}[B(s) \, B(1)] + t \, s \, \mathbb{E}[B^2(1)] \\ &= \min(t,s) - s \, t \\ &= \min(t,s) - \min(t,s) \, \max(t,s) \\ &= \min(t,s) \, (1 - \max(t,s)) \, . \end{aligned}$$

(iii) Show that the process Z' defined by Z'(t) = Z(1-t), for any $0 \le t \le 1$, has the same distribution as the Brownian bridge.

 $_$ Solution $_$

Note that the mapping $u \mapsto 1 - u$ is decreasing, hence

 $\min(1-t, 1-s) = 1 - \max(t, s)$ and $\max(1-t, 1-s) = 1 - \min(t, s)$.

By definition

$$K'(t,s) = \mathbb{E}[Z'(t) Z'(s)]$$

= $\mathbb{E}[Z(1-t) Z(1-s)]$
= $\min(1-t, 1-s) (1 - \max(1-t, 1-s))$
= $(1 - \max(t,s)) (1 - (1 - \min(t,s)))$
= $\min(t,s) (1 - \max(t,s))$.

Clearly, the process Z' is Gaussian, has almost surely continuous sample paths, and its correlation function coincides with the correlation function of the Brownian bridge Z. Therefore, the two processes Z and Z' have the same finite-dimensional distributions, hence they have the same distribution.

Consider the process Z'' defined by $Z''(t) = (1-t) B(\frac{t}{1-t})$, for any $0 \le t < 1$.

(iv) Show that $Z''(t) \to 0$ almost surely as $t \to 1$ (and define Z''(1) = 0 by continuity). Show that Z'' has the same distribution as the Brownian bridge.

[Hint: use the law of large numbers for Brownian motion: $\frac{B(u)}{u} \to 0$, almost surely as $u \uparrow \infty$.] _______SOLUTION ______

Clearly

$$Z''(t) = (1-t) B(\frac{t}{1-t}) = t \frac{B(\frac{t}{1-t})}{\frac{t}{1-t}}$$

and using the time change $u = \frac{t}{1-t}$, shows that

$$\lim_{t \to 1} \frac{B(\frac{t}{1-t})}{\frac{t}{1-t}} = \lim_{u \to \infty} \frac{B(u)}{u} = 0 ,$$

almost surely, hence $Z''(t) \to 0$ almost surely as $t \to 1$. Note that the mapping $u \mapsto \frac{u}{1-u}$ is increasing, hence

$$\mathbb{E}[B(\frac{t}{1-t}) B(\frac{s}{1-s})] = \min(\frac{t}{1-t}, \frac{s}{1-s}) = \frac{\min(t,s)}{1-\min(t,s)} ,$$

and

$$\begin{aligned} K''(t,s) &= \mathbb{E}[Z''(t) \, Z''(s)] \\ &= (1-t) \, (1-s) \, \mathbb{E}[B(\frac{t}{1-t}) \, B(\frac{s}{1-s})] \\ &= (1-\min(t,s)) \, (1-\max(t,s)) \, \frac{\min(t,s)}{1-\min(t,s)} \\ &= \min(t,s) \, (1-\max(t,s)) \; . \end{aligned}$$

Clearly, the process Z'' is Gaussian, has almost surely continuous sample paths, and its correlation function coincides with the correlation function of the Brownian bridge Z. Therefore, the two processes Z and Z'' have the same finite-dimensional distributions, hence they have the same distribution.

(v) Let F be a real-valued bounded continuous mapping defined on the functional space $C([0,1],\mathbb{R})$ of all real-valued continuous functions defined on [0,1]. Show that

$$\mathbb{E}[F(B) \mid |B(1)| < \varepsilon] \to \mathbb{E}[F(Z)] ,$$

as $\varepsilon \to 0$.

[Hint: Write B as a continuous function of the pair (Z, B(1)).]

____ Solution ____

Let Φ denote the mapping defined on $C([0,1],\mathbb{R})\times\mathbb{R}$ and taking values in $C([0,1],\mathbb{R})$, such that for any $u \in C([0,1],\mathbb{R})$ and any $\alpha \in \mathbb{R}$, the resulting $\Phi(u,\alpha) \in C([0,1],\mathbb{R})$ is defined by

$$\Phi(u,\alpha)(t) = u(t) + t\alpha , \quad \text{for any } 0 \le t \le 1.$$

Clearly Φ is a continuous mapping, and the definition Z(t) = B(t) - t B(1) for any $0 \le t \le 1$ implies $B = \Phi(Z, B(1))$. Therefore

$$\mathbb{E}[F(B) \mid |B(1)| < \varepsilon] = \mathbb{E}[F(\Phi(Z, B(1))) \mid |B(1)| < \varepsilon]$$
$$= \frac{\mathbb{E}[F(\Phi(Z, B(1))) \mathbf{1}(|B(1)| < \varepsilon)]}{\mathbb{P}[|B(1)| < \varepsilon]}$$

Recall that Z and B(1) are independent, and B(1) is a standard Gaussian random variable (with mean zero and variance unity), hence

$$\begin{split} \mathbb{E}[F(\Phi(Z,B(1))) \ 1_{\left(|B(1)| < \varepsilon\right)}] &= \int \mathbb{E}[F(\Phi(Z,x))] \ 1_{\left(|x| < \varepsilon\right)} \ \frac{1}{\sqrt{2\pi}} \ \exp\{-\frac{1}{2}x^2\} \, dx \\ &= \frac{\varepsilon}{\sqrt{2\pi}} \ \int_{-1}^{1} \mathbb{E}[F(\Phi(Z,\varepsilon y))] \ \exp\{-\frac{1}{2}\varepsilon^2 y^2\} \, dy \; . \end{split}$$

Clearly

$$F(\Phi(Z, \varepsilon y)) \exp\{-\frac{1}{2}\varepsilon^2 y^2\} \to F(\Phi(Z, 0)) = F(Z) ,$$

almost everywhere as $\varepsilon \downarrow 0$, hence

$$\frac{1}{2} \int_{-1}^{1} \mathbb{E}[F(\Phi(Z, \varepsilon y))] \exp\{-\frac{1}{2} \varepsilon^2 y^2\} dy \to \mathbb{E}[F(Z)] ,$$

as $\varepsilon \downarrow 0$, using the Lebesgue dominated convergence theorem, and also

$$\frac{1}{2} \int_{-1}^{1} \exp\{-\frac{1}{2}\varepsilon^2 y^2\} dy \to 1$$
,

hence

$$\mathbb{E}[F(B) \mid |B(1)| < \varepsilon] \to \mathbb{E}[F(Z)] ,$$

as $\varepsilon \downarrow 0$.

Complement: More generally

$$\begin{split} \mathbb{E}[F(B) \ 1_{(B(1) \in A)}] \ &= \ \mathbb{E}[F(\Phi(Z, B(1))) \ 1_{(B(1) \in A)}] \\ &= \ \int_A \mathbb{E}[F(\Phi(Z, x))] \ \frac{1}{\sqrt{2\pi}} \ \exp\{-\frac{1}{2} \, x^2\} \, dx \ , \end{split}$$

for any Borel subset A, hence

$$\mathbb{E}[F(\Phi(Z, x))] = \mathbb{E}[F(B) \mid B(1) = x] ,$$

for almost every x. Note that

$$F(\phi(Z, x')) \to F(\phi(Z, x))$$
,

almost surely as $x' \to x$, and convergence holds also in L^1 , using the Lebesgue dominated convergence theorem, i.e.

$$\mathbb{E}[F(\Phi(Z, x'))] \to \mathbb{E}[F(\phi(Z, x))] ,$$

as $x' \to x$. In other words, the mapping $x \mapsto \mathbb{E}[F(\Phi(Z, x))]$ is continuous, and $\mathbb{E}[F(\Phi(Z, x))]$ can be seen a continuous version of the conditional expectation $\mathbb{E}[F(B) \mid B(1) = x]$. In particular for x = 0, it holds

$$\mathbb{E}[F(Z)] = \mathbb{E}[F(\Phi(Z,0))] = \mathbb{E}[F(B) \mid B(1) = 0]$$

i.e. the distribution of the Brownian bridge Z is the same as the conditional distribution of the Brownian motion conditioned by taking the value 0 at time 1.

Problem 5 [Maximum value of a Brownian bridge] Let *B* be a one-dimensional standard Brownian motion, with B(0) = 0. Recall that the Brownian bridge is the process *Z* defined by Z(t) = B(t) - t B(1), for any $0 \le t \le 1$. Clearly, Z(0) = Z(1) = 0, and to assess how far away from zero can the Brownian bridge reach, a natural idea is to introduce the random variable $U = \max_{0 \le t \le 1} Z(t)$ and to let $F(a) = \mathbb{P}[U < a]$.

(i) Show that $U \ge 0$, and give the expression of F(a) for nonpositive values $a \le 0$.

_ Solution _____

The maximum $\max_{0 \le t \le 1} Z(t)$ is larger than any particular value such as Z(0), hence $U \ge 0$. For any nonpositive $a \le 0$, it holds $\{U < a\} \subseteq \{U < 0\} = \emptyset$, hence $F(a) = \mathbb{P}[U < a] = 0$.

From now on, it is assumed that a > 0.

(ii) Show that

$$1 - F(a) = \mathbb{P}[Z(t) = a, \text{ for some } 0 < t < 1] = \mathbb{P}[B(t) - at = a, \text{ for some } t > 0]$$

[Hint: introduce the process defined by $Z''(t) = (1-t) B(\frac{t}{1-t})$, for any $0 \le t < 1$.] Solution

Clearly, the level a cannot be reached for t = 0 nor for t = 1, since Z(0) = Z(1) = 0, hence

$$U = \max_{0 \le t \le 1} Z(t) = \max_{0 < t < 1} Z(t) .$$

By definition, and using the change of variable $s = \frac{t}{1-t}$ (so that $t = \frac{s}{1+s}$ and $1-t = \frac{1}{1+s}$), it holds

$$1 - F(a) = \mathbb{P}[\max_{0 < t < 1} Z(t) \ge a]$$

= $\mathbb{P}[Z(t) = a, \text{ for some } 0 < t < 1]$
= $\mathbb{P}[(1 - t) B(\frac{t}{1 - t}) = a, \text{ for some } 0 < t < 1]$
= $\mathbb{P}[B(s) = a (1 + s), \text{ for some } s > 0]$
= $\mathbb{P}[B(s) - a s = a, \text{ for some } s > 0]$.

For any a > 0, define

$$T_a = \inf\{t \ge 0 : B(t) - at \ge a\}$$

(iii) Show that T_a is a stopping time and that

$$1 - F(a) = \mathbb{P}[T_a < \infty]$$

By definition, the event $\{T_a \leq t\} = \{B(s) - as \geq a, \text{ for some } 0 \leq s \leq t\}$ is measurable w.r.t. the σ -algebra $\mathcal{F}(t) = \sigma(B(s) : 0 \leq s \leq t)$, i.e. the random variable T_a is a stopping time. Using the answer to the previous question yields

$$\mathbb{P}[T_a < \infty] = \mathbb{P}[B(t) - at \ge a, \text{ for some } t > 0]$$
$$= \mathbb{P}[B(t) - at = a, \text{ for some } t > 0] = 1 - F(a) .$$

(iv) For any positive t > 0, show that

$$\mathbb{E}\left[\exp\left\{2\,a\,B(T_a\wedge t)-2\,a^2\,(T_a\wedge t)\right)\right\}\right]=1$$

[Hint: consider the martingale

$$Z^{\lambda}(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^2 t\} ,$$

for $\lambda = 2 a$, and use the optional sampling theorem.]

_ Solution _

Introducing the martingale

$$Z^{\lambda}(t) = \exp\{\lambda B(t) - \frac{1}{2}\lambda^2 t\} ,$$

for $\lambda = 2 a$, and using the optional sampling theorem with the bounded stopping time $T_a \wedge t$, yields

$$\mathbb{E}\left[\exp\{2\,a\,B(T_a\wedge t)-2\,a^2\,(T_a\wedge t)\}\right]=1\ .$$

__ 🗆

(v) Taking $t \uparrow \infty$, show that

$$\mathbb{E}[1(T_a < \infty) \, \exp\{2\,a\,B(T_a) - 2\,a^2\,T_a\}] = 1 \, .$$

[Hint: consider separately the event $\{T_a < \infty\}$ and its complement $\{T_a = \infty\}$.]

_____ Solution __

Clearly

$${}^{1}(T_{a} < \infty) \ \exp\{2 \, a \, B(T_{a} \wedge t) - 2 \, a^{2} \, (T_{a} \wedge t)\} \to 1_{a}(T_{a} < \infty) \ \exp\{2 \, a \, B(T_{a}) - 2 \, a^{2} \, T_{a}\} \ ,$$

almost surely as $t \uparrow \infty$, and

$$\begin{split} ^1(T_a &= \infty) \; &\exp\{2\,a\,B(T_a \wedge t) - 2\,a^2\,(T_a \wedge t)\} = 1_{(T_a \,=\, \infty)} \; &\exp\{2\,a\,B(t) - 2\,a^2\,t\} \\ &= 1_{(T_a \,=\, \infty)} \; &\exp\{2\,a\,t\,(\frac{B(t)}{t} - a)\} \to 0 \;, \end{split}$$

almost surely as $t \uparrow \infty$. Note that for any $0 \le s \le T_a$ (and in particular for $s = T_a \land t$) it holds $B(s) - a \, s \le a$, hence

$$\exp\{2\,a\,B(T_a \wedge t) - 2\,a^2\,(T_a \wedge t)\} = \exp\{2\,a\,(B(T_a \wedge t) - a\,(T_a \wedge t))\} \le \exp\{2\,a^2\} ,$$

and convergence holds also in L^1 , using the Lebesgue dominated convergence theorem. Therefore

$$1 = \mathbb{E}[\exp\{2 a B(T_a \wedge t) - 2 a^2 (T_a \wedge t)\}]$$

= $\mathbb{E}[1_{(T_a < \infty)} \exp\{2 a B(T_a \wedge t) - 2 a^2 (T_a \wedge t)\}]$
+ $\mathbb{E}[1_{(T_a = \infty)} \exp\{2 a B(T_a \wedge t) - 2 a^2 (T_a \wedge t)\}]$
 $\rightarrow \mathbb{E}[1_{(T_a < \infty)} \exp\{2 a B(T_a) - 2 a^2 T_a\}].$

(vi) Conclude that

$$\mathbb{P}[T_a < \infty] = \exp\{-2a^2\} ,$$

and give the expression of (i) the cumulative distribution function and (ii) the probability density function of the random variable U.

Clearly
$$B(T_a) - a T_a = a$$
, hence

$$1 = \mathbb{E}[1_{(T_a < \infty)} \exp\{2 a B(T_a) - 2 a^2 T_a\}]$$

$$= \mathbb{E}[1_{(T_a < \infty)} \exp\{2 a (B(T_a) - a T_a)\}]$$

$$= \exp\{2a^2\} \mathbb{P}[T_a < \infty],$$

or in other words

$$1 - F(a) = \mathbb{P}[T_a < \infty] = \exp\{-2a^2\}$$

Therefore

$$\mathbb{P}[U < a] = F(a) = 1 - \exp\{-2a^2\} ,$$

and by continuity, the cumulative distribution function is

$$\mathbb{P}[U \le a] = 1 - \exp\{-2a^2\}$$
,

and the probability density function is just the derivative, i.e.

$$p(a) = 4 a \exp\{-2a^2\}$$
.

____ 🗆