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Exercise 0 [Law of large numbers]

Let B be a standard Brownian motion. Then

B(t
L — 0 ,
t
almost surely as t 1 oc.
SOLUTION
For any ' <t <t”, it holds
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and its is easy to conclude that — 0 almost surely as ¢ 1 co.

B(t)
t

1
A simple change of variable shows that t B (g) — 0 almost surely as t | 0.

Exercise 1 Let B be a standard Brownian motion. Show that the processes defined by:

e rescaling
t

X(t) = AB(53)

e lime inversion 1
tB(Z) iftt>0,

0 ift=0,

o refreshing
X(t) = B(t +to) — Bto) ,

e time reversal
X(t)=B(T—-t)—B(T), forany 0 <t < T,

are also standard Brownian motions, i.e. have the same distribution as B.

[Hint for the time inversion case: use the law of large numbers for Brownian motion: — 0,

B(u)
u
almost surely as u 1 00.]

SOLUTION

It is convenient here to use the following criterion: a process B is a standard Brownian motion
iff B is a zero mean Gaussian process with correlation function

K(s,t) = E[B(t) B(s)] = s At ,

and almost surely continuous sample paths.

For the rescaling case: Clearly, the process X is Gaussian and has almost surely continuous
sample paths. Moreover

t

B[X (1) X(s)] = X* E[B(5;

)B(55)]



1
For the time inversion case: Note that the mapping u — — is decreasing, hence
u

. 1
mln(;, g) - max(t,s) ’
and
1 1
ELX() X(s)] = ts E[B() B()
=ts min(%, é)

= Inax(t, S) min(t, S) m

= min(¢, s) .

For the refreshing case: Clearly, the process X is Gaussian and has almost surely continuous
sample path. Assuming that 0 < s < ¢ without loss of generality, it holds tg < tg+s < tg+1¢
hence (B(to+t) — B(to + s)) and (B(to + s) — B(to)) are independent r.v.’s and

E[X(t) X(s)] = E[(B(to +1t) — B(to)) (B(to + s) — B(to))]
= E[(B(to +t) — B(to + s)) (B(to + s) — B(to))] + E[(B(to + s) — B(to))?]
= (to+s)—to=s.
Alternatively, simple expansion yields
E[X(t) X(s)] = E[(B(to +1t) — B(to)) (B(to + s) — B(to))]
= E[B(to +t) B(to + s)] — E[B(to + t) B(to)] — E[B(to) B(to + s)] + E[B?(to)]

For the time reversal case: Clearly, the process X is Gaussian and has almost surely continuous
sample path. Assuming that 0 < s < ¢t < T without loss of generality, it holds 0 < T —t <
T — s <T hence (B(T)— B(T — s)) and (B(T — s) — B(T' — t)) are independent r.v.’s and

E[X(t) X(s)] = E[(B(T —t) — B(T)) (B(T - s) — B(T))]



Alternatively, simple expansion yields
E[X(t) X(s)] = E[(B(T' —t) — B(T)) (B(T — s) — B(T))]
= E[B(T —t) B(T — s)] — E[B(T — t) B(T)] — E[B(T) B(T — s)] + E[B*(T)]

=(T—-t)—(T—t)—(T—s)+T=s.

Exercise 2 Let B be a standard Brownian motion. Show that B itself, and the processes M
and Z defined by

M(t)=B*t)—t and  Z(t) =exp{A\B(t) — 3 \*t}

are martingales.

SOLUTION

For any 0 < s <'t, the r.v. (B(t) — B(s)) is zero mean and is independent of F(s), hence
E[B(t) | F(s)] = B(s) = E[B(t) = B(s) | F(s)] = 0 ,

i.e. B is a martingale.

For any 0 < s < t
M(t) — M(s) = (B*(t) — B*(s)) — (t —5) = (B(t) = B(s))* = (t — s) + 2 B(s) (B(t) — B(s)) ,
and the r.v. (B(t) — B(s)) is zero mean with variance (t — s) and is independent of F(s), hence
E[M(t) | F(s)] — M(s) = E[M(t) — M(s) | F(s)]
= E[(B(t) — B(s))* | F(5)] = (t = 5) + 2 B(s) E[B(t) — B(s) | F(s)] =0 ,

i.e. M is a martingale.

For any 0 < s <t

Z(t) = exp{\ (B(t) — B(s))} exp{—3\*(t — )} Z(s) ,

and the r.v. (B(t) — B(s)) is Gaussian, with zero mean and variance (¢t — s) and is independent
of F(s), hence the Laplace transform

Elexp{X (B(t) — B(s))} | F(s)] = exp{3 A* (t — 5)} ,
and
E[Z(t) | F(s)] = Elexp{A (B(t) — B(s))} | F(s)] exp{—=3 X’ (t — 8)} Z(s) = Z(s) ,

i.e. Z is a martingale.




Problem 3 [First hitting time for a Brownian motion] Let B be a one-dimensional
standard Brownian motion, with B(0) = 0. For any a > 0, define

T, =inf{t >0 : B(t) > a} .
(i) Show that T, is a stopping time.

SOLUTION

By definition, the event {T, < t} = {B(s) > a for some 0 < s <t} is measurable w.r.t. the
o—algebra F(t) = 0(B(s), 0 < s < t), i.e. the random variable T, is a stopping time.

d

(ii) For any real number \ and any positive ¢ > 0, show that
Elexp{A\B(T, At) — s N (T, At)}]=1.
[Hint: consider the martingale
ZM(t) = exp{ A B(t) —  \?t} ,

and use the optional sampling theorem. ]

SOLUTION

Introducing the martingale
Z(t) = exp{A B(t) — 1 \*t} ,

and using the optional sampling theorem with the bounded stopping time T, A ¢, yields
Elexp{AB(T, At) — s N (T, At)}]=1.

(iii) Taking ¢ 1 oo, show that for any positive A\ > 0

E[l( ) exp{Aa— i NT,}]=1.

T, <0

[Hint: consider separately the event {7, < oo} and its complement {7, = co}.]

SOLUTION

Clearly

exp{AB(T,) — s N’ T,} ,

LT, < so) @PABTaAt) =3 X (Ta A} = L7, o o)

almost surely as t 1 oo, and

L7, = o) P{AB(Ta At) - IN(T, A1)} = (T, = o0) eP{AB(t) - 1A%t}

= 1(Ta = o) exp{)\t(Bit) —IN}—0,



almost surely as t 1 co. Note that for any 0 < s < T}, (and in particular for s = T, A t) it holds
B(s) < a, hence for any positive A > 0

exp{AB(T, At) — L X3 (T, At)} < exp{Aa},
and convergence holds also in L', using the Lebesgue dominated convergence theorem. Therefore

1 = E[lexp{AB(T, At) — 22 (T, At)}]

= E[L(1, < o0) xP{AB(T. A1) = 3 X (T A D)} ]
+ E[l(Ta — ) exp{AB(T, At) — 52X (T, At)}]
= E[L(7, < o) xP{AB(To) = 33 Tu}] .

Clearly B(T,) = a, hence
L=E[l(7, < o0) &P{AB(Tu) - INT,}] = E[1(7, < o0) @P{Aa— INT,}],

or equivalently

E[l( exp{—2 N T,}] = exp{—Aa} .

T, < o)
O

(iv) Show that P[T, < oo] = 1 and show that the Laplace transform of the (prob-
ability distribution of the) stopping time 7, is given for any positive u > 0

by
Elexp{—pTu}] = exp{—\/2p a} .

SOLUTION

Clearly
142
1(Ta < OO) exp{—§/\ Ta} — 1(Ta < OO) 5
almost surely as A\ | 0, and note that
142
1(Ta < OO) exp{—g)\ Ta} <1 s
and convergence holds also in L', using the Lebesgue dominated convergence theorem. Therefore

E[1(7, < o) exp{—3 N T,}]| = P[T,, < oq] ,

and

E[l( exp{—1 N T,}] = exp{-Aa} = 1,

T, < )
as A | 0, and uniqueness of the limit yields P[T, < oo] = 1.
Therefore

Elexp{—3 M Tu}] =E[1(7, « o) exp{—3 X" Tu}] = exp{-Aa},
and taking A = /2 p yields
Elexp{—pTa}] = exp{—/2p a} .




Remark: The probability density defined by

2

a a
palt) = Ton exp{—2—t} , for any t > 0,
T

has Laplace transform exp{—+/2pu a}. In other words, this is the density of the (probability
distribution of the) stopping time Tj.

2
v) Show that the stopping time T, has the same distribution as the r.v. L where
g X2
X is a standard Gaussian r.v.

SOLUTION
a? a?
Using the change of variable t = —, with df =2 — dz, it holds
x x
3 2
Vi3 = a—g and ¢ 2,
T t

hence

E[6(T)] = /O " 6(t) palt) di

a2
exp{—Q—t} dt

N /0 o) Vort3

* a® ax? 1 9402
:/0 ¢5(?) NP exp{—iw}Qﬁdz‘
1
9~
V2T

1 [e’s) 2
- = / 0l%) exp{—4a?} de

CL2

= EW)(F)] :

oo a2 1 9
| o) ewi-bayas

for any bounded measurable function ¢.

Problem 4 [Brownian bridge|] Let B be a one-dimensional standard Brownian motion,
with B(0) = 0. Introduce the Brownian bridge as the process Z defined by Z(t) = B(t) —t B(1),
for any 0 <t < 1.

(i) Show that Z is a Gaussian process with zero mean, independent of the random
variable B(1).



SOLUTION

Clearl
' B[Z(t)] = B[B(6)] — tE[B(1)] =0,

for any 0 <t < 1.

For any integer n > 1 and any time instants 0 < ¢; < --- < ¢, < 1, the vector (Z(t1),- -+, Z(tn))
is a linear transformation of the Gaussian random vector (B(¢1),--- , B(t,), B(1)), hence it is a
Gaussian random vector. This shows that the whole process Z is Gaussian.

Clearly
E[Z(t) B(1)] = E[(B() — t B(1)) B(1)] = E[B(t) B(1)] — tB[B(1)] = 0 ,

hence the two Gaussian random variables Z(t) and B(1) are independent, since they have zero
correlation.

O

(ii) Give the expression of its correlation function, defined as K(t,s) = E[Z(t) Z(s)]
for any 0 <s,t < 1.

SOLUTION

By definition

K(t,s) = E[Z(t) Z(s)]
= E[(B(t) -t B(1)) (B(s) — s B(1))]
= E[B(t) B(s)] — s E[B(t) B(1)] — tE[B(s) B(1)] + t sE[B*(1)]
= min(t,s) — st
— min(t, s) — min(t, s) max(t, s)

= min(¢,s) (1 — max(t,s)) .

O

(iii) Show that the process Z’ defined by Z'(t) = Z(1 — t), for any 0 < ¢ < 1, has the
same distribution as the Brownian bridge.

SOLUTION

Note that the mapping u — 1 — u is decreasing, hence

min(l —¢,1 —s) = 1 — max(¢, s) and max(l —¢,1—s) =1—min(t,s) .



By definition

K'(t,s) = E[Z'(t) Z/(s)]
= E[Z(1—t)Z(1 - s)]
= min(1 —#,1—s) (1 — max(l1 —t,1 — s))
— (1 - max(t,s)) (1 - (1 - min(t, s)))
— min(t,s) (1 — max(t, s)) .

Clearly, the process Z’' is Gaussian, has almost surely continuous sample paths, and its corre-
lation function coincides with the correlation function of the Brownian bridge Z. Therefore,
the two processes Z and Z’ have the same finite-dimensional distributions, hence they have the
same distribution.

d

t
Consider the process Z” defined by Z"(t) = (1 —t) B(m), for any 0 <t < 1.

(iv) Show that Z”(t) — 0 almost surely as t — 1 (and define Z”(1) = 0 by continuity).
Show that Z” has the same distribution as the Brownian bridge.

B
[Hint: use the law of large numbers for Brownian motion: () — 0, almost surely as u 1 00.]
u
SOLUTION
Clearly
t
2"(t) = (1 — t)B(L) —¢ M
B 11—t t ’
1—1

and using the time change u = ¢ shows that

t

B(+—)
_ B
fim — L=ty B0
t—1 t u—o0 U
1-1¢
almost surely, hence Z”(t) — 0 almost surely as t — 1.
Note that the mapping u +— 1 Y is increasing, hence
t s , t s min(¢, s)
B B =mine =5 7 =3) = T min, )



and

K"(t,s) = E[Z"(t) Z"(s)]

=(1-t)(1—s) E[B(%)Bﬂis

)l

= (1 —min(t,s)) (1 — max(t, s)) %

= min(¢, s) (1 — max(t,s)) .

Clearly, the process Z” is Gaussian, has almost surely continuous sample paths, and its correla-
tion function coincides with the correlation function of the Brownian bridge Z. Therefore, the
two processes Z and Z” have the same finite-dimensional distributions, hence they have the
same distribution.

d

(v) Let F be a real-valued bounded continuous mapping defined on the functional
space C([0,1],R) of all real-valued continuous functions defined on [0,1]. Show
that

E[F(B) | [B(1)| <e] = E[F(Z)] ,

as ¢ — 0.

[Hint: Write B as a continuous function of the pair (Z, B(1)).]
SOLUTION

Let ® denote the mapping defined on C([0, 1], R) x R and taking values in C([0, 1], R), such that
for any u € C([0,1],R) and any « € R, the resulting ®(u, «) € C([0, 1], R) is defined by

D(u,a)(t) =u(t) +ta, for any 0 <t < 1.

Clearly ® is a continuous mapping, and the definition Z(t) = B(t) — ¢t B(1) for any 0 < ¢ < 1
implies B = ®(Z, B(1)). Therefore

E[F(B) | |B()| <e] = E[F(®(Z,B(1))) | [B(1)] <¢]

E[F(®(Z, BW)) L(|B(1)| < ¢)]
P[B(1)] < €]

Recall that Z and B(1) are independent, and B(1) is a standard Gaussian random variable
(with mean zero and variance unity), hence

BIF((ZBO) g < o)) = [ EF@ED) 1y < ) S0= exp(—4o*}ds

e 1
~ Ver /_1E[F<<I><z,ey>>] exp{—ze”y’}dy .

10




Clearl
' F(®(Z,ey)) exp{—§e*y*} = F(D(Z,0)) = F(Z) ,

almost everywhere as € | 0, hence

D=

1
/_ EIF(@(Z,ey)] exp{=} ey} dy — BIP(Z)].

as € | 0, using the Lebesgue dominated convergence theorem, and also
1
: / exp{—3*y*tdy — 1,
-1
hence
E[F(B) | |B(1)| <e] = E[F(Z)],

as € | 0.

Complement: More generally

E[F(B) 1(p(1) e 4)) = EIF(®(ZB) 1(p(1) e 4)

_ AE[F(CI)(Z,@*))] \/12? exp{—La?} dz ,
for any Borel subset A, hence
E[F(®(Z,2))] =E[F(B) | B(1) = a] ,
for almost every z. Note that
F(¢p(Z,2")) = F($(Z,2)) ,

almost surely as ' — =z, and convergence holds also in L!, using the Lebesgue dominated
convergence theorem, i.e.

E[F(2(Z,2))] = E[F($(Z,2))] .

as ¢’ — x. In other words, the mapping x — E[F(®(Z, x))] is continuous, and E[F(®(Z, z))] can
be seen a continuous version of the conditional expectation E[F(B) | B(1) = z]. In particular
for x = 0, it holds

E[F(2)] = E[F(®(Z,0))] = E[F(B) | B(1) = 0] .

i.e. the distribution of the Brownian bridge Z is the same as the conditional distribution of the
Brownian motion conditioned by taking the value 0 at time 1.

d
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Problem 5 [Maximum value of a Brownian bridge] Let B be a one-dimensional standard
Brownian motion, with B(0) = 0. Recall that the Brownian bridge is the process Z defined by
Z(t) = B(t) —t B(1), for any 0 < t < 1. Clearly, Z(0) = Z(1) = 0, and to assess how far away
from zero can the Brownian bridge reach, a natural idea is to introduce the random variable

U = max Z(t) and to let F(a) =P[U < a].
0<t<1

(i) Show that U > 0, and give the expression of F(a) for nonpositive values a < 0.

SOLUTION

The maximum [nax Z(t) is larger than any particular value such as Z(0), hence U > 0.

For any nonpositive a < 0, it holds {U < a} C {U < 0} =0, hence F(a) =P[U < a] = 0.

(]
From now on, it is assumed that a > 0.
(ii) Show that
1— F(a) =P[Z(t) = a, for some 0 <t < 1] =P[B(t) —at = a, for some ¢t > 0] .
t
[Hint: introduce the process defined by Z”(t) = (1 —t) B(ﬁ)’ for any 0 <t < 1]
SOLUTION
Clearly, the level a cannot be reached for t = 0 nor for t = 1, since Z(0) = Z(1) = 0, hence
U = max Z(t) = max Z(t) .
0<t<1 0<t<1
1
By definition, and using the change of variable s = (so that ¢t = and 1 —t = ),
1-1¢ 1+s 1+s
it holds
1-F =P Z(t) >
(a) = Plmax Z(t) > d]
= P[Z(t) = a, for some 0 < t < 1]
= P[(1 —1¢) B(ﬁ) = a, for some 0 < t < 1]
= P[B(s) =a(l+s), for some s > 0]
= P[B(s) —as = a, for some s > 0] .
O

For any a > 0, define
To, =inf{t >0 : B(t) —at >a} .

12



(iii) Show that T, is a stopping time and that

1 - F(a) = P[T}, < o0 .

SOLUTION

By definition, the event {7, < t} = {B(s) —as > a, for some 0 < s <t} is measurable w.r.t.
the o—algebra F(t) = o(B(s) : 0 < s <t), i.e. the random variable T}, is a stopping time.

Using the answer to the previous question yields

P[T, < o] = P[B(t) —at > a, for some ¢ > 0]

= P[B(t) —at = a, for somet >0 =1— F(a) .

(iv) For any positive ¢t > 0, show that

Elexp{2a B(T, At) —2a® (T, At)}] =1.

[Hint: consider the martingale
Z(t) = exp{A B(t) — 1 \*t} ,

for A = 2a, and use the optional sampling theorem.]

SOLUTION

Introducing the martingale
ZMt) = exp{\ B(t) — $A%t),

for A = 2a, and using the optional sampling theorem with the bounded stopping time T A t,
yields
Elexp{2a B(T, At) —2a*> (T, At)}] =1.

(v) Taking ¢ 1 oo, show that

E[1 ) exp{2a B(T,) —2a*T,} ]| =1.

T, < o0

[Hint: consider separately the event {7, < oo} and its complement {7}, = co}.]

SOLUTION

Clearly

1(Ta < ) exp{2a B(Ty ANt) —2a® (T, At)} — 1(Ta < ) exp{2a B(T,) — 2a°T,} ,

13



almost surely as t 1 oo, and

l(Ta — ) exp{2a B(Ty At) —2a® (T, At)} = I(Ta exp{2a B(t) — 2a%t}

:oo)

= 1(Ta — ) eXp{Qat(Bt(t) —a)} =0,

almost surely as ¢t T co. Note that for any 0 < s < T, (and in particular for s = T, A t) it holds
B(s) — as < a, hence

exp{2a B(T, At) —2a® (T, At)} = exp{2a (B(T, At) —a(Ty At))} < exp{24?} ,
and convergence holds also in L', using the Lebesgue dominated convergence theorem. Therefore

1 = Elexp{2aB(T, At) —2a* (T, At)}]

) exp{2a B(T, Nt) —2a® (T, At)}]

- IE‘:[1(Ta < 00
+E[L(7, = o0) exp{2aB(T, At) - 202 (T, At)}]
— E[l(Ta < ) exp{2a B(T,) — 2a*T,}] .

(vi) Conclude that
P[T, < oo] = exp{—2a?} ,

and give the expression of (i) the cumulative distribution function and (ii) the
probability density function of the random variable U.

SOLUTION

Clearly B(T,) — aT, = a, hence

1 = E[l( ) exp{2a B(T,) —QGQTa}]

T, < >

— IE[1< ) exp{2a (B(T,) —aTy)}]

T, < >

= exp{2a®} P[T, < o] ,

or in other words
1 — F(a) = P[T, < 00| = exp{—2a*} .

Therefore
P[U < a] = F(a) = 1 — exp{—2a®} ,

14



and by continuity, the cumulative distribution function is
P[U < a] = 1 — exp{—2a®} ,
and the probability density function is just the derivative, i.e.

p(a) = 4a exp{—2a°} .
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