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STOCHASTIC INTEGRAL IN INTRINSIC CLOCK = BROWNIAN MOTION

Let B be a one-dimensional standard Brownian motion, with B(0) = 0, and adapted to a given
filtration F, and consider the stochastic process X defined by

t
x() = [ otwant)
for any ¢t > 0, where ¢ belongs to MI%C, ie.
t
AW = [ ol du< oo
0
almost surely, for any ¢t > 0.

i rite the It6 formula for the process X and for the complex—valued function

i) Write the Ito fi la for th X and for th 1 lued functi
f(z) = exp{i Az} where the scalar \ is fixed, between the time instants s and ¢,
with 0 < s <t.

SOLUTION

Clearly, the complex—valued function f(z) = exp{i Az} is twice continuously differentiable, with
f'(z) =iXf(x) and f"(x) = —A2? f(z), and writing the It6 formula yields

exp{i A X (t)} = exp{iAX(s)} +iA / exp{i A X (u)} ¢(u) dB(u)

1y / exp{i A X (u)} |(u) |2 du

for any 0 < s <.

For any t > 0, define
7(t) = inf{s > 0 : / |p(w)|? du >t} |
0

if such time exists, and 7(¢) = oo otherwise.



(ii) For any t > 0, show that the random variable 7(t) is a stopping time, and that
the equivalent definition

() = inf{s > 0 : /0 6(w)2 du =t} .

holds, hence A(7(t)) =t.
Show that 7(t) 1 co almost surely as t 1 co.

SOLUTION

Note that the mapping ¢ — A(¢) is continuous, hence the first time when any level is exceeded
is also the first time when the same level is reached.

Note that the mapping ¢ — A(t) is non—decreasing, and two cases can occur: either A(t) has a
finite limit or A(¢) has an infinite limit as ¢ T co. In the first case where A(¢) has a finite limit as
t 1 00, then for any level ¢ above this limit there is no such time s > 0 such that A(s) =t hence
7(t) = co. In the second case where A(t) has an infinite limit as ¢ T oo, then 7(t) is finite for
any finite time ¢, and (because the mapping ¢ — 7(¢) is non—decreasing) this implies that 7(t)
has an infinite limit as t 1 co: indeed, if 7(¢) would have a finite limit as ¢ 1 oo, then for any u
above this limit the level A(u) could not be reached in finite time, which is a contradiction. In
both cases it holds that 7(¢) 1 0o as t 1 oc.

d

From now on, it is assumed that

/w|¢<u>|2du=oo7
0

i.e. A(t) T oo almost surely as ¢ T oo, so that 7(¢) < oo for any ¢ < co.

(iii) Show (a simple graphic could help to prove (a) and (b)) that

(a) the mapping t — 7(¢) is non—decreasing and left—continuous,
(b) for any t,s >0
{AQ®) = s} = {r(s) <t} ,

(c) for any nonnegative Borel measurable function f and for any ¢ > 0

t 7(t)
/0 fr(s)ds= [ f(s)dAs) -

0

[Hint: just prove (c) for any function f of the form of an indicator function, defined by f(s) =
1 (0<s<L) for any s > 0 and for some L > 0 (the same result for an arbitrary nonnegative

Borel function would follow by a monotone class argument).]

SOLUTION




Figure 1: increasing process t — A(t) vs. intrinsic clock t — 7(¢)

Let f be an indicator function, defined by f(s) = 1(0 <s<L) for any s > 0 and for some
L > 0, and let ¢t > 0 be fixed. Firstly S

o dA(s) = T(t)l dA(s) = o dA(s) = A(T(t) AN L
| r@aae = [igc cpy e = [T aaw = ac D).

and secondly, using point (b) yields

/Of(7'<3>)d3:/0 1(0§7‘(5)§L) dS:/; I(OSSSA(L)) dSZA(L)/\t.

Two cases can occur: either 7(¢) > L or 7(t) < L. In the first case where 7(t) > L, then firstly
A(r(t)ANL) = A(L), and secondly using point (b) yields A(L) < t hence A(L)At = A(L). In the
second case where 7(t) < L, then firstly A(7(t) AL) = A(7(t)) = t, and secondly using point (b)
yields A(L) >t hence A(L) At =t. In both cases, it holds A(7(¢) A L) = A(L) A t, hence

7(t) t
ﬂﬂM®=AfWW%.

0

d

The mapping 7 is called the intrinsic clock (or intrinsic time) for the stochastic process X, and
the time—changed stochastic process Z is defined by

7(t)
Z(t) = X(7(t)) = ; ¢(u) dB(u) ,

for any ¢ > 0.



(iv) Using the representation obtained in question (i) and using the result obtained
in question (iii-c), show that
7(t)
exp{i\Z(t)} = exp{iAZ(s)}+i )\ / exp{i A X (u)} ¢(u) dB(u)

7(s)

t
- %)\2 / exp{i\Z(u)} du ,
for any 0 < s < t.

SOLUTION

Note that X (7(s)) = Z(s) and X(7(t)) = Z(t) and using the representation obtained in ques-
tion (i) between times 7(s) and 7(t) yields

(1)
exp{iAZ(t)} = exp{iAZ(s)} +i\ /( | exp{i A X (u)} ¢(u) dB(u)

T(t)
Y / exp{i A X (u)} ()| du

(s)
for any 0 < s < t. Using the result obtained in question (iii-c) yields

7(t)

un
/ exp{i A X (u)} |o(u) 2 du = / exp{i A X (u)} dA(u)
0 0

= / exp{i)\X(T(u))}du:/ exp{iA\Z(u)}du ,
0 0

and by difference

7(t) t
/ exp{i)\X(u)}|¢(u)|2du:/ exp{i A Z(u)} du .

(s)

Introduce the o—algebra A(t) = F(7(t)), i.e. A € A(t) iff for any u > 0
An{7(t) <u} € F(u) .

If the stochastic process M, defined by the stochastic integral

M(t) = /0 exp{i A X (u)} 6(u) dB(u) |

for any t > 0, would be a martingale, and if the stopping time 7(¢) would be almost surely
bounded, then the optional sampling theorem would yield

7(t)

E[M(7(t)) — M(7(s)) | A(s)] = E[/ exp{i A X(u)} ¢(u) dB(u) [ A(s)] =0,

T(S

for any 0 < s < t. The purpose of the next question is to show that the same identity holds in
the more general case considered here, where ¢ does belong to MI%C only.
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(v) Show that the stopped process M7(2), defined by M7™(*2)(t) = M(t A7(ts)) for any
t > 0, is a square—integrable martingale, and that

7(t2)
E| / exp{i AX ()} 6(u) dB(u) | A(tr)] =0,

(t1)
for any 0 < t; <ts.

[Hint: recall that for a uniformly integrable martingale, the optional sampling theorem holds
for any almost surely finite (and not necessarily bounded) stopping times.]

SOLUTION

Let t5 > 0 be fixed. Following the same approach as for the extension of stochastic integral by
localization, introduce the stochastic process M7(*2) defined by

M) = [ 1100 < 4 < iy x0liAX ()} 0(0) dB(w)

for any ¢ > 0. Although the integrand u — exp{i A X (u)} ¢(u) does belong to M2 only and not
necessarily to M?2([0,00)), the integrand u 1(0 < u < 7(ts)) exp{i A X (u)} ¢(u) does belong

to M2([0,00)): indeed

T(t2)

B[ 102w < r(t) SAX @Y 6P du<E [T jow)Pdu < tr < oc.

Therefore, the stochastic process M7(*2) is a square-integrable martingale, hence a uniformly
integrable martingale. Note that uniform integrability could be obtained directly, since

ERTOR = E [ 10 < o < (1)) espliAX (@)} o) du

7(t2)
< IE/ |p(u))? du <ty < 00 ,
0

hence

sup E|M7E) (1) <ty < o0 .
>0

The optional sampling theorem for a uniformly integrable martingale holds for any almost surely
finite (and not necessarily bounded) stopping times, such as 0 < 7(t1) < 7(t2) < 00, hence

E[M™)(7(ty)) | F(r(t1))] = M™®)(r(t1))
or in other words
E[M(7(t2)) | A(t1)] = M(7(t1)) ,
hence
7(t2)

E[M(r(t2)) — M(7(t2)) | A(t1)] = E[/ exp{i A X (u)} ¢(u) dB(u) | A(t2)] = 0.

T(t1)




(vi) Show that the following expression
E[expli A (Z(1) — Z(s))} | Als)] = exp{~5 X2 (¢ 9)}

holds for the conditional characteristic function.

Conclude that the process 7 is a standard Brownian motion w.r.t. the filtration

A= (A1), t>0).

SOLUTION

Taking conditional expectation w.r.t. A(s) in the representation obtained in question (iv) and
using the result obtained in question (v) yields

7(t)

Elexp{i\Z(t)} | A(s)] = exp{iAZ(s)} +iA E[/ exp{i A X (u)} ¢(u) dB(u) | A(s)]

TS

— 12 E[/ exp{i A Z(u)} du | A(s)]

= exp{iAZ(s)} — 3 \* E[/ exp{iAZ(u)}du | A(s)] ,

or equivalently

Elexp{i A (Z(t) = Z(s))} | A(s)] = 1 -5 X° E[/ exp{i A (Z(u) — Z(s))} du | A(s)]

EEER T / Efexp{i A (Z(u) — Z(s))} | A(s)] du ,
for any t > s. Therefore, the function defined by
V(t) = Elexp{i A (Z(t) — Z(s))} | A(s)] ,

for any t > s, satisfies the ordinary differential equation

t
V() =1-3)\° / V(u)du ,
with explicit solution
V(t) = exp{—5 A (t— )} ,
for any ¢t > s. The identity

Elexp{i A (Z(t) — Z(5))} | A(s)] = exp{—5 A* (t = 5)} |

valid for any scalar A, shows that the increment (Z(t) — Z(s)) is a Gaussian random variable,
independent of A(s), with mean zero and variance (f —s), for any ¢t > s, hence the time—changed
stochastic process Z is a Brownian motion adapted to the filtration A.

This result is conveniently summarized by the statement:



stochastic integral in intrinsic clock = Brownian motion.

(vii) Show that

T
/¢www

L —0,
| 16w du

0
almost surely as T 1 oo.

[Hint: use the law of large numbers for Brownian motion. ]

SOLUTION

Since 7(t) 1 0o almost surely as ¢ T 0o, to study the behaviour of

[ owanw

Aw@muwf

as t T oo, it is sufficient to study the behaviour of

X(r(t) _ Z(t)

A(r(t)  t
as t T oco. Note that the process Z is a Brownian motion, and it follows from the law of large
numbers for Brownian motion that

almost surely as t 1 oc.

SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION

Consider the following statistical model: there exist a parametric family (Py, 8 € R) of proba-
bility measures and a one—dimensional stochastic process X, such that under Py it holds

dX(t) =0b(X(t))dt +dWy(t) ,
where Wy is a standard Brownian motion, and where the drift function b satisfies the global
Lipschitz and linear growth conditions.

It is assumed that the maximum likelihood estimator of the parameter 6 based on the observation
of (X(t),0<t<T)in the time interval [0,T] is given by the following expression

T
/0 b(X () dX (1)

H(T) = T
wawmt
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Let 0y denote the (unknown) true value of the parameter, and let Py = Py, denote the corre-
sponding probability measure.

(viii) Show that under Py the maximum likelihood estimator satisfies
T

| vt awate
0

é\(T) =0y + T
/0 B (1)) 2 e

)

where W, is a standard Brownian motion.

SOLUTION

Under Py = Py, it holds
dX(t) = 0pb(X (t))dt + dWy(t) ,

where Wy = Wp, is a standard Brownian motion, hence

T T
| axyaxe = [ s b o) de+ amio)

T T
_ 2
_— /0 B(X ()2 dt + /O b(X () dWol(t) |

and
/ " hx ) ax
o(T) = 2° =0y +

T
/0 bX () dWo (1)
/ e o) at |
0

T
/0 BX (1)) 2 e

O

Note that this expression cannot be used in practice, since neither is (Wy(t), 0 < ¢t < T') observed
(available), nor is 6y known. The purpose of this expression is rather to analyze the behaviour
of the estimator 6(7T'), for instance its asymptotic behaviour as T' 1 co.

(ix) Show that under Py the maximum likelihood estimator is strongly consistent,

~

i.e. O(T) — 6y almost surely as T 1 cc.

SOLUTION

Using the result obtained in question (vii) yields

— 0,

T
/0 bX () dWo (1)
/ () a
0



almost surely as T'1 0, hence under Py

é\(T) =6y +

0

almost surely as T 1 0, i.e. the maximum likelihood estimator §(T ) is strongly consistent.

d

Actually, studying the ratio of two random variables is not so easy, and it is more convenient to
study the time—changed estimator

~

T
O(H) = 0(r(H)) where T(H) =inf{T">0 : / b(X()*dt = H} .
0
(x) Show that under P, the time—changed maximum likelihood estimator satisfies
0(H) —90+/ ) dWo(t) .

SOLUTION

T(H)
/0 DX (1)) dt =

Clearly

and under Py it holds

()
| s am )
0

T(H)

[b(X (£)[* dt

0

The benefit of considering the time—changed maximum likelihood estimator is that the denom-
inator is now deterministic, and the problem reduces to studying a stochastic integral under its
intrinsic clock.

(xi) Using the results obtained in the first part, show that under P, the time—
changed maximum likelihood estimator
e is strongly consistent, i.e. 8(H) — 6y almost surely as H 1 oo,
e is unbiased (i.e. has a mean equal to the true value 6),
e has a (nonasymptotic) variance equal to 1/H,

e is normally distributed, with mean 6y and variance 1/H.



SOLUTION

It follows from the results obtained in the first part that the process Z defined by

T(H)
2(H) = /0 b(X (1)) dWol) |

for any H > 0, is a Brownian motion under Py, and in particular Z(H) is a Gaussian random
variable with mean zero and variance H. Note that
3 Z(H)
0(H) =6y + ——
(H) =60+
hence (§(H) — 6p) is a Gaussian random variable with mean zero and variance 1/H, and in
particular

Eo[0(H)] =6y  and  Eo|0(H)—6o]* =

L
H
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