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Stochastic integral in intrinsic clock = Brownian motion

Let B be a one–dimensional standard Brownian motion, with B(0) = 0, and adapted to a given
filtration F , and consider the stochastic process X defined by

X(t) =

∫ t

0
φ(u) dB(u) ,

for any t ≥ 0, where φ belongs to M2
loc, i.e.

A(t) =

∫ t

0
|φ(u)|2 du <∞ ,

almost surely, for any t ≥ 0.

(i) Write the Itô formula for the process X and for the complex–valued function
f(x) = exp{i λ x} where the scalar λ is fixed, between the time instants s and t,
with 0 ≤ s ≤ t.

Solution

Clearly, the complex–valued function f(x) = exp{i λ x} is twice continuously differentiable, with
f ′(x) = i λ f(x) and f ′′(x) = −λ2 f(x), and writing the Itô formula yields

exp{i λX(t)} = exp{i λX(s)}+ i λ

∫ t

s
exp{i λX(u)}φ(u) dB(u)

− 1
2 λ

2

∫ t

s
exp{i λX(u)} |φ(u)|2 du ,

for any 0 ≤ s ≤ t.

2

For any t ≥ 0, define

τ(t) = inf{s ≥ 0 :

∫ s

0
|φ(u)|2 du ≥ t} ,

if such time exists, and τ(t) =∞ otherwise.
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(ii) For any t ≥ 0, show that the random variable τ(t) is a stopping time, and that
the equivalent definition

τ(t) = inf{s ≥ 0 :

∫ s

0
|φ(u)|2 du = t} .

holds, hence A(τ(t)) = t.

Show that τ(t) ↑ ∞ almost surely as t ↑ ∞.

Solution

Note that the mapping t 7→ A(t) is continuous, hence the first time when any level is exceeded
is also the first time when the same level is reached.

Note that the mapping t 7→ A(t) is non–decreasing, and two cases can occur: either A(t) has a
finite limit or A(t) has an infinite limit as t ↑ ∞. In the first case where A(t) has a finite limit as
t ↑ ∞, then for any level t above this limit there is no such time s ≥ 0 such that A(s) = t hence
τ(t) = ∞. In the second case where A(t) has an infinite limit as t ↑ ∞, then τ(t) is finite for
any finite time t, and (because the mapping t 7→ τ(t) is non–decreasing) this implies that τ(t)
has an infinite limit as t ↑ ∞: indeed, if τ(t) would have a finite limit as t ↑ ∞, then for any u
above this limit the level A(u) could not be reached in finite time, which is a contradiction. In
both cases it holds that τ(t) ↑ ∞ as t ↑ ∞.

2

From now on, it is assumed that ∫ ∞
0
|φ(u)|2 du =∞ ,

i.e. A(t) ↑ ∞ almost surely as t ↑ ∞, so that τ(t) <∞ for any t <∞.

(iii) Show (a simple graphic could help to prove (a) and (b)) that

(a) the mapping t 7→ τ(t) is non–decreasing and left–continuous,

(b) for any t, s ≥ 0
{A(t) ≥ s} = {τ(s) ≤ t} ,

(c) for any nonnegative Borel measurable function f and for any t ≥ 0∫ t

0
f(τ(s)) ds =

∫ τ(t)

0
f(s) dA(s) .

[Hint: just prove (c) for any function f of the form of an indicator function, defined by f(s) =
1(0 ≤ s ≤ L) for any s ≥ 0 and for some L > 0 (the same result for an arbitrary nonnegative

Borel function would follow by a monotone class argument).]

Solution

2



Figure 1: increasing process t 7→ A(t) vs. intrinsic clock t 7→ τ(t)

Let f be an indicator function, defined by f(s) = 1(0 ≤ s ≤ L) for any s ≥ 0 and for some

L > 0, and let t ≥ 0 be fixed. Firstly∫ τ(t)

0
f(s) dA(s) =

∫ τ(t)

0
1(0 ≤ s ≤ L) dA(s) =

∫ τ(t)∧L

0
dA(s) = A(τ(t) ∧ L) ,

and secondly, using point (b) yields∫ t

0
f(τ(s)) ds =

∫ t

0
1(0 ≤ τ(s) ≤ L) ds =

∫ t

0
1(0 ≤ s ≤ A(L)) ds = A(L) ∧ t .

Two cases can occur: either τ(t) > L or τ(t) ≤ L. In the first case where τ(t) > L, then firstly
A(τ(t)∧L) = A(L), and secondly using point (b) yields A(L) < t hence A(L)∧ t = A(L). In the
second case where τ(t) ≤ L, then firstly A(τ(t)∧L) = A(τ(t)) = t, and secondly using point (b)
yields A(L) ≥ t hence A(L) ∧ t = t. In both cases, it holds A(τ(t) ∧ L) = A(L) ∧ t, hence∫ τ(t)

0
f(s) dA(s) =

∫ t

0
f(τ(s)) ds .

2

The mapping τ is called the intrinsic clock (or intrinsic time) for the stochastic process X, and
the time–changed stochastic process Z is defined by

Z(t) = X(τ(t)) =

∫ τ(t)

0
φ(u) dB(u) ,

for any t ≥ 0.
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(iv) Using the representation obtained in question (i) and using the result obtained
in question (iii-c), show that

exp{i λZ(t)} = exp{i λZ(s)}+ i λ

∫ τ(t)

τ(s)
exp{i λX(u)}φ(u) dB(u)

− 1
2 λ

2

∫ t

s
exp{i λZ(u)} du ,

for any 0 ≤ s ≤ t.

Solution

Note that X(τ(s)) = Z(s) and X(τ(t)) = Z(t) and using the representation obtained in ques-
tion (i) between times τ(s) and τ(t) yields

exp{i λZ(t)} = exp{i λZ(s)}+ i λ

∫ τ(t)

τ(s)
exp{i λX(u)}φ(u) dB(u)

− 1
2 λ

2

∫ τ(t)

τ(s)
exp{i λX(u)} |φ(u)|2 du ,

for any 0 ≤ s ≤ t. Using the result obtained in question (iii-c) yields∫ τ(t)

0
exp{i λX(u)} |φ(u)|2 du =

∫ τ(t)

0
exp{i λX(u)} dA(u)

=

∫ t

0
exp{i λX(τ(u))} du =

∫ t

0
exp{i λZ(u)} du ,

and by difference ∫ τ(t)

τ(s)
exp{i λX(u)} |φ(u)|2 du =

∫ t

s
exp{i λZ(u)} du .

2

Introduce the σ–algebra A(t) = F(τ(t)), i.e. A ∈ A(t) iff for any u ≥ 0

A ∩ {τ(t) ≤ u} ∈ F(u) .

If the stochastic process M , defined by the stochastic integral

M(t) =

∫ t

0
exp{i λX(u)}φ(u) dB(u) ,

for any t ≥ 0, would be a martingale, and if the stopping time τ(t) would be almost surely
bounded, then the optional sampling theorem would yield

E[M(τ(t))−M(τ(s)) | A(s)] = E[

∫ τ(t)

τ(s)
exp{i λX(u)}φ(u) dB(u) | A(s)] = 0 ,

for any 0 ≤ s ≤ t. The purpose of the next question is to show that the same identity holds in
the more general case considered here, where φ does belong to M2

loc only.
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(v) Show that the stopped process M τ(t2), defined by M τ(t2)(t) = M(t∧ τ(t2)) for any
t ≥ 0, is a square–integrable martingale, and that

E[

∫ τ(t2)

τ(t1)
exp{i λX(u)}φ(u) dB(u) | A(t1)] = 0 ,

for any 0 ≤ t1 ≤ t2.

[Hint: recall that for a uniformly integrable martingale, the optional sampling theorem holds
for any almost surely finite (and not necessarily bounded) stopping times.]

Solution

Let t2 ≥ 0 be fixed. Following the same approach as for the extension of stochastic integral by
localization, introduce the stochastic process M τ(t2) defined by

M τ(t2)(t) =

∫ t

0
1(0 ≤ u ≤ τ(t2))

exp{i λX(u)}φ(u) dB(u) ,

for any t ≥ 0. Although the integrand u 7→ exp{i λX(u)}φ(u) does belong to M2
loc only and not

necessarily to M2([0,∞)), the integrand u 7→ 1(0 ≤ u ≤ τ(t2))
exp{i λX(u)}φ(u) does belong

to M2([0,∞)): indeed

E
∫ ∞
0
|1(0 ≤ u ≤ τ(t2))

exp{i λX(u)}φ(u)|2 du ≤ E
∫ τ(t2)

0
|φ(u)|2 du ≤ t2 <∞ .

Therefore, the stochastic process M τ(t2) is a square–integrable martingale, hence a uniformly
integrable martingale. Note that uniform integrability could be obtained directly, since

E|M τ(t2)(t)|2 = E
∫ t

0
|1(0 ≤ u ≤ τ(t2))

exp{i λX(u)}φ(u)|2 du

≤ E
∫ τ(t2)

0
|φ(u)|2 du ≤ t2 <∞ ,

hence
sup
t≥0

E|M τ(t2)(t)|2 ≤ t2 <∞ .

The optional sampling theorem for a uniformly integrable martingale holds for any almost surely
finite (and not necessarily bounded) stopping times, such as 0 ≤ τ(t1) ≤ τ(t2) <∞, hence

E[M τ(t2)(τ(t2)) | F(τ(t1))] = M τ(t2)(τ(t1)) ,

or in other words
E[M(τ(t2)) | A(t1)] = M(τ(t1)) ,

hence

E[M(τ(t2))−M(τ(t1)) | A(t1)] = E[

∫ τ(t2)

τ(t1)
exp{i λX(u)}φ(u) dB(u) | A(t1)] = 0 .

2
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(vi) Show that the following expression

E[ exp{i λ (Z(t)− Z(s))} | A(s)] = exp{−1
2 λ

2 (t− s)} ,

holds for the conditional characteristic function.

Conclude that the process Z is a standard Brownian motion w.r.t. the filtration
A = (A(t) , t ≥ 0).

Solution

Taking conditional expectation w.r.t. A(s) in the representation obtained in question (iv) and
using the result obtained in question (v) yields

E[exp{i λZ(t)} | A(s)] = exp{i λZ(s)}+ i λ E[

∫ τ(t)

τ(s)
exp{i λX(u)}φ(u) dB(u) | A(s)]

− 1
2 λ

2 E[

∫ t

s
exp{i λZ(u)} du | A(s)]

= exp{i λZ(s)} − 1
2 λ

2 E[

∫ t

s
exp{i λZ(u)} du | A(s)] ,

or equivalently

E[exp{i λ (Z(t)− Z(s))} | A(s)] = 1− 1
2 λ

2 E[

∫ t

s
exp{i λ (Z(u)− Z(s))} du | A(s)]

= 1− 1
2 λ

2

∫ t

s
E[exp{i λ (Z(u)− Z(s))} | A(s)] du ,

for any t ≥ s. Therefore, the function defined by

V (t) = E[exp{i λ (Z(t)− Z(s))} | A(s)] ,

for any t ≥ s, satisfies the ordinary differential equation

V (t) = 1− 1
2 λ

2

∫ t

s
V (u) du ,

with explicit solution
V (t) = exp{−1

2 λ
2 (t− s)} ,

for any t ≥ s. The identity

E[exp{i λ (Z(t)− Z(s))} | A(s)] = exp{−1
2 λ

2 (t− s)} ,

valid for any scalar λ, shows that the increment (Z(t) − Z(s)) is a Gaussian random variable,
independent of A(s), with mean zero and variance (t−s), for any t ≥ s, hence the time–changed
stochastic process Z is a Brownian motion adapted to the filtration A.

This result is conveniently summarized by the statement:
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stochastic integral in intrinsic clock = Brownian motion.

2

(vii) Show that ∫ T

0
φ(u) dB(u)∫ T

0
|φ(u)|2 du

−→ 0 ,

almost surely as T ↑ ∞.

[Hint: use the law of large numbers for Brownian motion.]

Solution

Since τ(t) ↑ ∞ almost surely as t ↑ ∞, to study the behaviour of∫ t

0
φ(u) dB(u)∫ t

0
|φ(u)|2 du

=
X(t)

A(t)
,

as t ↑ ∞, it is sufficient to study the behaviour of

X(τ(t))

A(τ(t))
=
Z(t)

t
,

as t ↑ ∞. Note that the process Z is a Brownian motion, and it follows from the law of large
numbers for Brownian motion that

Z(t)

t
−→ 0 ,

almost surely as t ↑ ∞.

2

Sequential maximum likelihood estimation

Consider the following statistical model: there exist a parametric family (Pθ , θ ∈ R) of proba-
bility measures and a one–dimensional stochastic process X, such that under Pθ it holds

dX(t) = θ b(X(t)) dt+ dWθ(t) ,

where Wθ is a standard Brownian motion, and where the drift function b satisfies the global
Lipschitz and linear growth conditions.

It is assumed that the maximum likelihood estimator of the parameter θ based on the observation
of (X(t) , 0 ≤ t ≤ T ) in the time interval [0, T ] is given by the following expression

θ̂(T ) =

∫ T

0
b(X(t)) dX(t)∫ T

0
|b(X(t))|2 dt

.
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Let θ0 denote the (unknown) true value of the parameter, and let P0 = Pθ0 denote the corre-
sponding probability measure.

(viii) Show that under P0 the maximum likelihood estimator satisfies

θ̂(T ) = θ0 +

∫ T

0
b(X(t)) dW0(t)∫ T

0
|b(X(t))|2 dt

,

where W0 is a standard Brownian motion.

Solution

Under P0 = Pθ0 it holds
dX(t) = θ0 b(X(t)) dt+ dW0(t) ,

where W0 = Wθ0 is a standard Brownian motion, hence∫ T

0
b(X(t)) dX(t) =

∫ T

0
b(X(t)) [θ0 b(X(t)) dt+ dW0(t)]

= θ0

∫ T

0
|b(X(t))|2 dt+

∫ T

0
b(X(t)) dW0(t) ,

and

θ̂(T ) =

∫ T

0
b(X(t)) dX(t)∫ T

0
|b(X(t))|2 dt

= θ0 +

∫ T

0
b(X(t)) dW0(t)∫ T

0
|b(X(t))|2 dt

.

2

Note that this expression cannot be used in practice, since neither is (W0(t) , 0 ≤ t ≤ T ) observed
(available), nor is θ0 known. The purpose of this expression is rather to analyze the behaviour
of the estimator θ̂(T ), for instance its asymptotic behaviour as T ↑ ∞.

(ix) Show that under P0 the maximum likelihood estimator is strongly consistent,
i.e. θ̂(T )→ θ0 almost surely as T ↑ ∞.

Solution

Using the result obtained in question (vii) yields∫ T

0
b(X(t)) dW0(t)∫ T

0
|b(X(t))|2 dt

−→ 0 ,
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almost surely as T ↑ 0, hence under P0

θ̂(T ) = θ0 +

∫ T

0
b(X(t)) dW0(t)∫ T

0
|b(X(t))|2 dt

−→ θ0 ,

almost surely as T ↑ 0, i.e. the maximum likelihood estimator θ̂(T ) is strongly consistent.

2

Actually, studying the ratio of two random variables is not so easy, and it is more convenient to
study the time–changed estimator

θ(H) = θ̂(τ(H)) where τ(H) = inf{T ≥ 0 :

∫ T

0
|b(X(t))|2 dt = H} .

(x) Show that under P0 the time–changed maximum likelihood estimator satisfies

θ(H) = θ0 +
1

H

∫ τ(H)

0
b(X(t)) dW0(t) .

Solution

Clearly ∫ τ(H)

0
|b(X(t))|2 dt = H ,

and under P0 it holds

θ(H) = θ̂(τ(H)) = θ0 +

∫ τ(H)

0
b(X(t)) dW0(t)∫ τ(H)

0
|b(X(t))|2 dt

= θ0 +
1

H

∫ τ(H)

0
b(X(t)) dW0(t) .

2

The benefit of considering the time–changed maximum likelihood estimator is that the denom-
inator is now deterministic, and the problem reduces to studying a stochastic integral under its
intrinsic clock.

(xi) Using the results obtained in the first part, show that under P0 the time–
changed maximum likelihood estimator

• is strongly consistent, i.e. θ(H)→ θ0 almost surely as H ↑ ∞,

• is unbiased (i.e. has a mean equal to the true value θ0),

• has a (nonasymptotic) variance equal to 1/H,

• is normally distributed, with mean θ0 and variance 1/H.
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Solution

It follows from the results obtained in the first part that the process Z defined by

Z(H) =

∫ τ(H)

0
b(X(t)) dW0(t) ,

for any H ≥ 0, is a Brownian motion under P0, and in particular Z(H) is a Gaussian random
variable with mean zero and variance H. Note that

θ(H) = θ0 +
Z(H)

H
,

hence (θ(H) − θ0) is a Gaussian random variable with mean zero and variance 1/H, and in
particular

E0[θ(H)] = θ0 and E0|θ(H)− θ0|2 =
1

H
.

2
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