INSA Rennes, 4GM–AROM Random Models of Dynamical Systems Introduction to SDE's

Written Exam (aka DS)

January 8, 2019

Stochastic integral in intrinsic clock = Brownian motion

Let B be a one-dimensional standard Brownian motion, with B(0) = 0, and adapted to a given filtration \mathcal{F} , and consider the stochastic process X defined by

$$X(t) = \int_0^t \phi(u) \, dB(u) \; ,$$

for any $t \ge 0$, where ϕ belongs to M_{loc}^2 , i.e.

$$A(t) = \int_0^t |\phi(u)|^2 \, du < \infty \ ,$$

almost surely, for any $t \ge 0$.

(i) Write the Itô formula for the process X and for the complex-valued function $f(x) = \exp\{i \lambda x\}$ where the scalar λ is fixed, between the time instants s and t, with $0 \le s \le t$.

_ Solution _____

Clearly, the complex-valued function $f(x) = \exp\{i \lambda x\}$ is twice continuously differentiable, with $f'(x) = i \lambda f(x)$ and $f''(x) = -\lambda^2 f(x)$, and writing the Itô formula yields

$$\exp\{i\lambda X(t)\} = \exp\{i\lambda X(s)\} + i\lambda \int_s^t \exp\{i\lambda X(u)\}\phi(u) dB(u)$$
$$-\frac{1}{2}\lambda^2 \int_s^t \exp\{i\lambda X(u)\} |\phi(u)|^2 du ,$$

for any $0 \le s \le t$.

For any $t \ge 0$, define

$$\tau(t) = \inf\{s \ge 0 : \int_0^s |\phi(u)|^2 \, du \ge t\} \; ,$$

if such time exists, and $\tau(t) = \infty$ otherwise.

_____ 🗆

(ii) For any $t \ge 0$, show that the random variable $\tau(t)$ is a stopping time, and that the equivalent definition

$$\tau(t) = \inf\{s \ge 0 : \int_0^s |\phi(u)|^2 \, du = t\} \; .$$

holds, hence $A(\tau(t)) = t$.

Show that $\tau(t) \uparrow \infty$ almost surely as $t \uparrow \infty$.

 $_$ Solution $_$

Note that the mapping $t \mapsto A(t)$ is continuous, hence the first time when any level is exceeded is also the first time when the same level is reached.

Note that the mapping $t \mapsto A(t)$ is non-decreasing, and two cases can occur: either A(t) has a finite limit or A(t) has an infinite limit as $t \uparrow \infty$. In the first case where A(t) has a finite limit as $t \uparrow \infty$, then for any level t above this limit there is no such time $s \ge 0$ such that A(s) = t hence $\tau(t) = \infty$. In the second case where A(t) has an infinite limit as $t \uparrow \infty$, then $\tau(t)$ is finite for any finite time t, and (because the mapping $t \mapsto \tau(t)$ is non-decreasing) this implies that $\tau(t)$ has an infinite limit as $t \uparrow \infty$; indeed, if $\tau(t)$ would have a finite limit as $t \uparrow \infty$, then for any u above this limit the level A(u) could not be reached in finite time, which is a contradiction. In both cases it holds that $\tau(t) \uparrow \infty$ as $t \uparrow \infty$.

From now on, it is assumed that

$$\int_0^\infty |\phi(u)|^2 \, du = \infty \; ,$$

i.e. $A(t) \uparrow \infty$ almost surely as $t \uparrow \infty$, so that $\tau(t) < \infty$ for any $t < \infty$.

(iii) Show (a simple graphic could help to prove (a) and (b)) that

- (a) the mapping $t \mapsto \tau(t)$ is non-decreasing and left-continuous,
- (b) for any $t, s \ge 0$

$$\{A(t) \ge s\} = \{\tau(s) \le t\}$$
,

(c) for any nonnegative Borel measurable function f and for any $t \ge 0$

$$\int_0^t f(\tau(s)) \, ds = \int_0^{\tau(t)} f(s) \, dA(s) \, \, .$$

[Hint: just prove (c) for any function f of the form of an indicator function, defined by $f(s) = 1_{(0 \le s \le L)}$ for any $s \ge 0$ and for some L > 0 (the same result for an arbitrary nonnegative Borel function would follow by a monotone class argument).]

SOLUTION _

Figure 1: increasing process $t \mapsto A(t)$ vs. intrinsic clock $t \mapsto \tau(t)$

Let f be an indicator function, defined by $f(s) = 1 (0 \le s \le L)$ for any $s \ge 0$ and for some L > 0, and let $t \ge 0$ be fixed. Firstly

$$\int_0^{\tau(t)} f(s) \, dA(s) = \int_0^{\tau(t)} \mathbf{1}_{\{0 \le s \le L\}} \, dA(s) = \int_0^{\tau(t) \wedge L} dA(s) = A(\tau(t) \wedge L) \, ,$$

and secondly, using point (b) yields

$$\int_0^t f(\tau(s)) \, ds = \int_0^t \mathbf{1}_{\{0 \le \tau(s) \le L\}} \, ds = \int_0^t \mathbf{1}_{\{0 \le s \le A(L)\}} \, ds = A(L) \wedge t \, .$$

Two cases can occur: either $\tau(t) > L$ or $\tau(t) \leq L$. In the first case where $\tau(t) > L$, then firstly $A(\tau(t) \wedge L) = A(L)$, and secondly using point (b) yields A(L) < t hence $A(L) \wedge t = A(L)$. In the second case where $\tau(t) \leq L$, then firstly $A(\tau(t) \wedge L) = A(\tau(t)) = t$, and secondly using point (b) yields $A(L) \geq t$ hence $A(L) \wedge t = t$. In both cases, it holds $A(\tau(t) \wedge L) = A(L) \wedge t$, hence

$$\int_{0}^{\tau(t)} f(s) \, dA(s) = \int_{0}^{t} f(\tau(s)) \, ds \, .$$

The mapping τ is called the *intrinsic clock* (or *intrinsic time*) for the stochastic process X, and the time-changed stochastic process Z is defined by

$$Z(t) = X(\tau(t)) = \int_0^{\tau(t)} \phi(u) \, dB(u) \; ,$$

for any $t \geq 0$.

(iv) Using the representation obtained in question (i) and using the result obtained in question (iii-c), show that

$$\exp\{i\,\lambda\,Z(t)\} = \exp\{i\,\lambda\,Z(s)\} + i\,\lambda\,\int_{\tau(s)}^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u)$$
$$-\frac{1}{2}\,\lambda^2\,\int_s^t \exp\{i\,\lambda\,Z(u)\}\,du\,,$$

for any $0 \le s \le t$.

_____ Solution _____

Note that $X(\tau(s)) = Z(s)$ and $X(\tau(t)) = Z(t)$ and using the representation obtained in question (i) between times $\tau(s)$ and $\tau(t)$ yields

$$\exp\{i\,\lambda\,Z(t)\} = \exp\{i\,\lambda\,Z(s)\} + i\,\lambda\,\int_{\tau(s)}^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u) - \frac{1}{2}\,\lambda^2\,\int_{\tau(s)}^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,|\phi(u)|^2\,du\,,$$

for any $0 \le s \le t$. Using the result obtained in question (iii-c) yields

$$\int_0^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,|\phi(u)|^2\,du = \int_0^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,dA(u)$$
$$= \int_0^t \exp\{i\,\lambda\,X(\tau(u))\}\,du = \int_0^t \exp\{i\,\lambda\,Z(u)\}\,du \ ,$$

and by difference

$$\int_{\tau(s)}^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,|\phi(u)|^2\,du = \int_s^t \exp\{i\,\lambda\,Z(u)\}\,du\;.$$

_ 🗆

Introduce the σ -algebra $\mathcal{A}(t) = \mathcal{F}(\tau(t))$, i.e. $A \in \mathcal{A}(t)$ iff for any $u \ge 0$

$$A \cap \{\tau(t) \le u\} \in \mathcal{F}(u) \ .$$

If the stochastic process M, defined by the stochastic integral

$$M(t) = \int_0^t \exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u)\;,$$

for any $t \ge 0$, would be a martingale, and if the stopping time $\tau(t)$ would be almost surely bounded, then the optional sampling theorem would yield

$$\mathbb{E}[M(\tau(t)) - M(\tau(s)) \mid \mathcal{A}(s)] = \mathbb{E}[\int_{\tau(s)}^{\tau(t)} \exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u) \mid \mathcal{A}(s)] = 0$$

for any $0 \le s \le t$. The purpose of the next question is to show that the same identity holds in the more general case considered here, where ϕ does belong to M_{loc}^2 only.

(v) Show that the stopped process $M^{\tau(t_2)}$, defined by $M^{\tau(t_2)}(t) = M(t \wedge \tau(t_2))$ for any $t \ge 0$, is a square-integrable martingale, and that

$$\mathbb{E}\left[\int_{\tau(t_1)}^{\tau(t_2)} \exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u)\mid\mathcal{A}(t_1)\right] = 0 \;,$$

for any $0 \le t_1 \le t_2$.

[Hint: recall that for a uniformly integrable martingale, the optional sampling theorem holds for any almost surely *finite* (and not necessarily *bounded*) stopping times.]

 $_$ Solution $_$

Let $t_2 \ge 0$ be fixed. Following the same approach as for the extension of stochastic integral by *localization*, introduce the stochastic process $M^{\tau(t_2)}$ defined by

$$M^{\tau(t_2)}(t) = \int_0^t \mathbb{1}_{\{0 \le u \le \tau(t_2)\}} \exp\{i \,\lambda \, X(u)\} \,\phi(u) \, dB(u) \ ,$$

for any $t \ge 0$. Although the integrand $u \mapsto \exp\{i \lambda X(u)\} \phi(u)$ does belong to M^2_{loc} only and not necessarily to $M^2([0,\infty))$, the integrand $u \mapsto 1_{\{0 \le u \le \tau(t_2)\}} \exp\{i \lambda X(u)\} \phi(u)$ does belong to $M^2([0,\infty))$: indeed

$$\mathbb{E} \int_0^\infty |1_{\{0 \le u \le \tau(t_2)\}} \exp\{i \,\lambda \, X(u)\} \,\phi(u)|^2 \, du \le \mathbb{E} \int_0^{\tau(t_2)} |\phi(u)|^2 \, du \le t_2 < \infty \ .$$

Therefore, the stochastic process $M^{\tau(t_2)}$ is a square–integrable martingale, hence a *uniformly integrable* martingale. Note that uniform integrability could be obtained directly, since

$$\mathbb{E}|M^{\tau(t_2)}(t)|^2 = \mathbb{E}\int_0^t |1_{\{0 \le u \le \tau(t_2)\}} \exp\{i\,\lambda\,X(u)\}\,\phi(u)|^2\,du$$
$$\leq \mathbb{E}\int_0^{\tau(t_2)} |\phi(u)|^2\,du \le t_2 < \infty ,$$

hence

$$\sup_{t \ge 0} \mathbb{E} |M^{\tau(t_2)}(t)|^2 \le t_2 < \infty .$$

The optional sampling theorem for a uniformly integrable martingale holds for any almost surely *finite* (and not necessarily *bounded*) stopping times, such as $0 \le \tau(t_1) \le \tau(t_2) < \infty$, hence

$$\mathbb{E}[M^{\tau(t_2)}(\tau(t_2)) \mid \mathcal{F}(\tau(t_1))] = M^{\tau(t_2)}(\tau(t_1)) ,$$

or in other words

$$\mathbb{E}[M(\tau(t_2)) \mid \mathcal{A}(t_1)] = M(\tau(t_1)) ,$$

hence

$$\mathbb{E}[M(\tau(t_2)) - M(\tau(t_1)) \mid \mathcal{A}(t_1)] = \mathbb{E}[\int_{\tau(t_1)}^{\tau(t_2)} \exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u) \mid \mathcal{A}(t_1)] = 0 \;.$$

(vi) Show that the following expression

$$\mathbb{E}[\exp\{i\lambda\left(Z(t)-Z(s)\right)\} \mid \mathcal{A}(s)] = \exp\{-\frac{1}{2}\lambda^2\left(t-s\right)\},\$$

holds for the conditional characteristic function.

Conclude that the process Z is a standard Brownian motion w.r.t. the filtration $\mathcal{A} = (\mathcal{A}(t), t \ge 0).$

_ Solution _____

Taking conditional expectation w.r.t. $\mathcal{A}(s)$ in the representation obtained in question (iv) and using the result obtained in question (v) yields

$$\mathbb{E}[\exp\{i\,\lambda\,Z(t)\}\mid\mathcal{A}(s)] = \exp\{i\,\lambda\,Z(s)\} + i\,\lambda\,\mathbb{E}[\int_{\tau(s)}^{\tau(t)}\exp\{i\,\lambda\,X(u)\}\,\phi(u)\,dB(u)\mid\mathcal{A}(s)] \\ -\frac{1}{2}\,\lambda^2\,\mathbb{E}[\int_s^t\exp\{i\,\lambda\,Z(u)\}\,du\mid\mathcal{A}(s)] \\ = \exp\{i\,\lambda\,Z(s)\} - \frac{1}{2}\,\lambda^2\,\mathbb{E}[\int_s^t\exp\{i\,\lambda\,Z(u)\}\,du\mid\mathcal{A}(s)]\ ,$$

or equivalently

$$\mathbb{E}[\exp\{i\lambda(Z(t) - Z(s))\} \mid \mathcal{A}(s)] = 1 - \frac{1}{2}\lambda^2 \mathbb{E}[\int_s^t \exp\{i\lambda(Z(u) - Z(s))\} du \mid \mathcal{A}(s)]$$
$$= 1 - \frac{1}{2}\lambda^2 \int_s^t \mathbb{E}[\exp\{i\lambda(Z(u) - Z(s))\} \mid \mathcal{A}(s)] du$$

for any $t \ge s$. Therefore, the function defined by

 $V(t) = \mathbb{E}[\exp\{i\lambda \left(Z(t) - Z(s)\right)\} \mid \mathcal{A}(s)] ,$

for any $t \ge s$, satisfies the ordinary differential equation

$$V(t) = 1 - \frac{1}{2}\lambda^2 \int_s^t V(u) \, du$$

with explicit solution

$$V(t) = \exp\{-\frac{1}{2}\lambda^2 (t-s)\},\$$

for any $t \geq s$. The identity

$$\mathbb{E}[\exp\{i\lambda(Z(t)-Z(s))\} \mid \mathcal{A}(s)] = \exp\{-\frac{1}{2}\lambda^2(t-s)\},\$$

valid for any scalar λ , shows that the increment (Z(t) - Z(s)) is a Gaussian random variable, independent of $\mathcal{A}(s)$, with mean zero and variance (t-s), for any $t \geq s$, hence the time-changed stochastic process Z is a Brownian motion adapted to the filtration \mathcal{A} .

This result is conveniently summarized by the statement:

(vii) Show that

$$\frac{\int_0^T \phi(u) \, dB(u)}{\int_0^T |\phi(u)|^2 \, du} \longrightarrow 0 \ ,$$

almost surely as $T \uparrow \infty$.

[Hint: use the law of large numbers for Brownian motion.]

$_$ Solution $_$

Since $\tau(t) \uparrow \infty$ almost surely as $t \uparrow \infty$, to study the behaviour of

$$\frac{\int_0^t \phi(u) \, dB(u)}{\int_0^t |\phi(u)|^2 \, du} = \frac{X(t)}{A(t)} \; ,$$

as $t \uparrow \infty$, it is sufficient to study the behaviour of

$$\frac{X(\tau(t))}{A(\tau(t))} = \frac{Z(t)}{t} ,$$

as $t \uparrow \infty$. Note that the process Z is a Brownian motion, and it follows from the law of large numbers for Brownian motion that

$$\frac{Z(t)}{t} \longrightarrow 0 \; ,$$

almost surely as $t \uparrow \infty$.

__ 🗆

SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION

Consider the following statistical model: there exist a parametric family $(\mathbb{P}_{\theta}, \theta \in \mathbb{R})$ of probability measures and a one-dimensional stochastic process X, such that under \mathbb{P}_{θ} it holds

$$dX(t) = \theta b(X(t)) dt + dW_{\theta}(t) ,$$

where W_{θ} is a standard Brownian motion, and where the drift function b satisfies the global Lipschitz and linear growth conditions.

It is assumed that the maximum likelihood estimator of the parameter θ based on the observation of $(X(t), 0 \le t \le T)$ in the time interval [0, T] is given by the following expression

$$\widehat{\theta}(T) = \frac{\int_0^T b(X(t)) \, dX(t)}{\int_0^T |b(X(t))|^2 \, dt} \; .$$

Let θ_0 denote the (unknown) true value of the parameter, and let $\mathbb{P}_0 = \mathbb{P}_{\theta_0}$ denote the corresponding probability measure.

(viii) Show that under \mathbb{P}_0 the maximum likelihood estimator satisfies

$$\widehat{\theta}(T) = \theta_0 + \frac{\int_0^T b(X(t)) \, dW_0(t)}{\int_0^T |b(X(t))|^2 \, dt}$$

,

where W_0 is a standard Brownian motion.

SOLUTION _

Under $\mathbb{P}_0 = \mathbb{P}_{\theta_0}$ it holds

$$dX(t) = \theta_0 b(X(t)) dt + dW_0(t)$$

where $W_0 = W_{\theta_0}$ is a standard Brownian motion, hence

$$\int_0^T b(X(t)) \, dX(t) = \int_0^T b(X(t)) \left[\theta_0 \, b(X(t)) \, dt + dW_0(t)\right]$$
$$= \theta_0 \, \int_0^T |b(X(t))|^2 \, dt + \int_0^T b(X(t)) \, dW_0(t) \; ,$$

and

$$\widehat{\theta}(T) = \frac{\int_0^T b(X(t)) \, dX(t)}{\int_0^T |b(X(t))|^2 \, dt} = \theta_0 + \frac{\int_0^T b(X(t)) \, dW_0(t)}{\int_0^T |b(X(t))|^2 \, dt} \,.$$

Note that this expression cannot be used in practice, since neither is $(W_0(t), 0 \le t \le T)$ observed (available), nor is θ_0 known. The purpose of this expression is rather to analyze the behaviour of the estimator $\hat{\theta}(T)$, for instance its asymptotic behaviour as $T \uparrow \infty$.

(ix) Show that under \mathbb{P}_0 the maximum likelihood estimator is strongly consistent, i.e. $\widehat{\theta}(T) \to \theta_0$ almost surely as $T \uparrow \infty$.

_ Solution _____

Using the result obtained in question (vii) yields

$$\frac{\int_0^T b(X(t)) \, dW_0(t)}{\int_0^T |b(X(t))|^2 \, dt} \longrightarrow 0 \;,$$

almost surely as $T \uparrow 0$, hence under \mathbb{P}_0

$$\widehat{\theta}(T) = \theta_0 + \frac{\int_0^T b(X(t)) \, dW_0(t)}{\int_0^T |b(X(t))|^2 \, dt} \longrightarrow \theta_0 \ ,$$

almost surely as $T \uparrow 0$, i.e. the maximum likelihood estimator $\widehat{\theta}(T)$ is strongly consistent.

Actually, studying the ratio of two random variables is not so easy, and it is more convenient to study the time–changed estimator

_ □

$$\overline{\theta}(H) = \widehat{\theta}(\tau(H))$$
 where $\tau(H) = \inf\{T \ge 0 : \int_0^T |b(X(t))|^2 dt = H\}$.

(x) Show that under \mathbb{P}_0 the time-changed maximum likelihood estimator satisfies

$$\overline{\theta}(H) = \theta_0 + \frac{1}{H} \int_0^{\tau(H)} b(X(t)) \, dW_0(t)$$

 $_$ Solution $_$

Clearly

$$\int_0^{\tau(H)} |b(X(t))|^2 \, dt = H \, \, .$$

and under \mathbb{P}_0 it holds

$$\overline{\theta}(H) = \widehat{\theta}(\tau(H)) = \theta_0 + \frac{\int_0^{\tau(H)} b(X(t)) \, dW_0(t)}{\int_0^{\tau(H)} |b(X(t))|^2 \, dt} = \theta_0 + \frac{1}{H} \int_0^{\tau(H)} b(X(t)) \, dW_0(t) \; .$$

The benefit of considering the time-changed maximum likelihood estimator is that the denominator is now deterministic, and the problem reduces to studying a stochastic integral under its intrinsic clock.

- (xi) Using the results obtained in the first part, show that under \mathbb{P}_0 the time-changed maximum likelihood estimator
 - is strongly consistent, i.e. $\overline{\theta}(H) \rightarrow \theta_0$ almost surely as $H \uparrow \infty$,
 - is unbiased (i.e. has a mean equal to the true value θ_0),
 - has a (nonasymptotic) variance equal to 1/H,
 - is normally distributed, with mean θ_0 and variance 1/H.

It follows from the results obtained in the first part that the process Z defined by

$$Z(H) = \int_0^{\tau(H)} b(X(t)) \, dW_0(t) \; ,$$

for any $H \ge 0$, is a Brownian motion under \mathbb{P}_0 , and in particular Z(H) is a Gaussian random variable with mean zero and variance H. Note that

$$\overline{\theta}(H) = \theta_0 + \frac{Z(H)}{H} ,$$

hence $(\overline{\theta}(H) - \theta_0)$ is a Gaussian random variable with mean zero and variance 1/H, and in particular

$$\mathbb{E}_0[\overline{\theta}(H)] = \theta_0$$
 and $\mathbb{E}_0|\overline{\theta}(H) - \theta_0|^2 = \frac{1}{H}$.

_____ 🗆