INSA Rennes, 4GM-AROM
 Random Models of Dynamical Systems II
 Introduction to SDE's
 Written Exam (aka DS)

January 11, 2017

The objective is to study the one-dimensional (Lévy stochastic area) process

$$
A(t)=\int_{0}^{t} B_{1}(s) d B_{2}(s)-\int_{0}^{t} B_{2}(s) d B_{1}(s),
$$

where $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ is a two-dimensional standard Brownian motion, with $B(0)=0$. The Lévy stochastic area is used for instance in the design of high-order numerical schemes for SDE's.
(i) Show that $A(t)$ is an Itô process (and give its decomposition in terms of a usual integral and a stochastic integral).
\qquad Solution \qquad
Clearly

$$
A(t)=\int_{0}^{t}\left(\begin{array}{ll}
-B_{2}(s) & B_{1}(s)
\end{array}\right)\binom{d B_{1}(s)}{d B_{2}(s)}
$$

or in other words

$$
A(t)=\int_{0}^{t} \psi(s) d s+\int_{0}^{t} \phi(s) d B(s)
$$

with

$$
\psi(s)=0 \quad \text { and } \quad \phi(s)=\left(-B_{2}(s) \quad B_{1}(s)\right) .
$$

(ii) Show that $\mathbb{E}[A(t)]=0$ and $\mathbb{E}\left[|A(t)|^{2}\right]=t^{2}$.
\qquad
\qquad
Note that

$$
\phi(s) \phi^{*}(s)=B_{1}^{2}(s)+B_{2}^{2}(s),
$$

with the notations introduced in the answer to question (i), hence

$$
\mathbb{E} \int_{0}^{t} \phi(s) \phi^{*}(s) d s=\int_{0}^{t} \mathbb{E}\left[B_{1}^{2}(s)\right] d s+\int_{0}^{t} \mathbb{E}\left[B_{2}^{2}(s)\right] d s=2 \int_{0}^{t} s d s=t^{2}<\infty,
$$

i.e. the integrand $\phi(s)$ belongs to $M^{2}([0, T])$ for any $T>0$. Therefore, the stochastic integral $A(t)$ is a square-integrable martingale, and it follows that

$$
\mathbb{E}[A(t)]=0 \quad \text { and } \quad \mathbb{E}\left[|A(t)|^{2}\right]=\mathbb{E} \int_{0}^{t} \phi(s) \phi^{*}(s) d s=t^{2}
$$

To go further, i.e. beyond the expression of the first two moments, and to study the probability distribution of the r.v. $A(t)$, it is convenient to introduce the one-dimensional processes

$$
C(t)=B_{1}^{2}(t)+B_{2}^{2}(t)=|B(t)|^{2} \quad \text { and } \quad D(t)=B_{1}(t) B_{2}(t)
$$

In particular, it will be proved that the charactristic function satisfies

$$
\mathbb{E}[\exp \{i u A(t)\}]=\frac{1}{\cosh (u t)}
$$

for any real number u. Here, 'cosh' denotes the hyperbolic cosine function.
(iii) Show that $C(t)$ and $D(t)$ are two Itô processes (and give their decompositions in terms of a usual integral and a stochastic integral).

Solution \qquad
Introduce the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$, and note that

$$
f^{\prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
2 x_{1} & 2 x_{2}
\end{array}\right) \quad \text { and } \quad f^{\prime \prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right)
$$

In addition $f(B(0))=B_{1}^{2}(0)+B_{2}^{2}(0)=0$. The Itô formula for the two-dimensional Brownian motion $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ and for the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$, yields

$$
\begin{aligned}
f(B(t)) & =f(B(0))+\int_{0}^{t} f^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} \Delta f(B(s)) d s \\
& =2 \int_{0}^{t}\left(B_{1}(s) \quad B_{2}(s)\right)\left(\begin{array}{c}
d B_{1}(s) \\
\\
d B_{2}(s)
\end{array}\right)+2 t
\end{aligned}
$$

or in other words

$$
C(t)=\int_{0}^{t} \psi(s) d s+\int_{0}^{t} \phi(s) d B(s)
$$

with

$$
\psi(s)=2 \quad \text { and } \quad \phi(s)=2\left(B_{1}(s) \quad B_{2}(s)\right)
$$

Equivalently

$$
C(t)=|B(t)|^{2}=2 \int_{0}^{t} B_{1}(s) d B_{1}(s)+2 \int_{0}^{t} B_{2}(s) d B_{2}(s)+2 t
$$

Similarly, introduce the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, and note that

$$
f^{\prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right) \quad \text { and } \quad f^{\prime \prime}\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

In addition $f(B(0))=B_{1}(0) B_{2}(0)=0$. The Itô formula for the two-dimensional Brownian motion $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ and for the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, yields

$$
\begin{aligned}
f(B(t)) & =f(B(0))+\int_{0}^{t} f^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} \Delta f(B(s)) d s \\
& =\int_{0}^{t}\left(B_{2}(s) \quad B_{1}(s)\right)\left(\begin{array}{c}
d B_{1}(s) \\
\\
d B_{2}(s)
\end{array}\right)
\end{aligned}
$$

or in other words

$$
D(t)=\int_{0}^{t} \psi(s) d s+\int_{0}^{t} \phi(s) d B(s)
$$

with

$$
\psi(s)=0 \quad \text { and } \quad \phi(s)=\left(B_{2}(s) \quad B_{1}(s)\right)
$$

Equivalently

$$
D(t)=\int_{0}^{t} B_{2}(s) d B_{1}(s)+\int_{0}^{t} B_{1}(s) d B_{2}(s)
$$

(iv) Check that $A(t)$ and $-A(t)$ have the same probability distribution, hence the probability distribution is symmetric. Show that

$$
\mathbb{E}[\exp \{i u A(t)\}]=\mathbb{E}[\cos (u A(t))],
$$

for any real number u.
\qquad
Clearly, the two processes $\left(B_{1}(t), B_{2}(t)\right)$ and $\left(B_{2}(t), B_{1}(t)\right)$ have the same probability distribution, hence the two r.v.'s

$$
\int_{0}^{t} B_{1}(s) d B_{2}(s)-\int_{0}^{t} B_{2}(s) d B_{1}(s) \quad \text { and } \quad \int_{0}^{t} B_{2}(s) d B_{1}(s)-\int_{0}^{t} B_{1}(s) d B_{2}(s)
$$

have the same probability distribution, or in other words $A(t)$ and $-A(t)$ have the same probability distribution. Therefore

$$
\begin{aligned}
& \mathbb{E}[\exp \{i u A(t)\}]=\mathbb{E}[\cos (u A(t))]+i \mathbb{E}[\sin (u A(t))] \\
= & \mathbb{E}[\exp \{-i u A(t)\}]=\mathbb{E}[\cos (u A(t))]-i \mathbb{E}[\sin (u A(t))] \\
= & \mathbb{E}[\cos (u A(t))]
\end{aligned}
$$

for any real number u.

Define also the one-dimensional processes

$$
\begin{aligned}
V(t) & =\cos (u A(t)), \\
W(t) & =-\frac{1}{2} \alpha(t) C(t)+\beta(t), \\
Z(t) & =V(t) \exp \{W(t)\},
\end{aligned}
$$

where $\alpha(t)$ and $\beta(t)$ are two continuously differentiable functions defined on $[0, \infty)$ with values in \mathbb{R}, to be specified later on.
(v) Show that $V(t)$ and $W(t)$ are two Itô processes (and give their decompositions in terms of a usual integral and a stochastic integral).

Recall from the answer to question (i) that $A(t)$ is a one-dimensional Itô process defined as

$$
A(t)=\int_{0}^{t} \psi(s) d s+\int_{0}^{t} \phi(s) d B(s)
$$

with

$$
\psi(s)=0 \quad \text { and } \quad \phi(s)=\left(\begin{array}{ll}
-B_{2}(s) & B_{1}(s)
\end{array}\right) .
$$

Introduce the function $f(a)=\cos (u a)$ defined on \mathbb{R} with values in \mathbb{R}, and note that

$$
f^{\prime}(a)=-u \sin (u a) \quad \text { and } \quad f^{\prime \prime}(a)=-u^{2} \cos (u a)=-u^{2} f(a) .
$$

In addition $f(A(0))=\cos (u A(0))=1$. The Itô formula for the one-dimensional Itô process $A(t)$ and for the function $f(a)=\cos (u a)$, yields

$$
\begin{aligned}
f(A(t))= & f(A(0))+\int_{0}^{t} f^{\prime}(A(s))[\psi(s) d s+\phi(s) d B(s)]+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(A(s)) \phi(s) \phi^{*}(s) d s \\
= & 1-u \int_{0}^{t} \sin (u A(s))\left[B_{1}(s) d B_{2}(s)-B_{2}(s) d B_{1}(s)\right] \\
& -\frac{1}{2} u^{2} \int_{0}^{t} f(A(s))\left[B_{1}^{2}(s)+B_{2}^{2}(s)\right] d s
\end{aligned}
$$

in other words

$$
V(t)=1-\frac{1}{2} u^{2} \int_{0}^{t} V(s) C(s) d s-u \int_{0}^{t} \sin (u A(s))\left[B_{1}(s) d B_{2}(s)-B_{2}(s) d B_{1}(s)\right]
$$

Note that $X(t)=(\alpha(t), C(t))$ is a two-dimensional Itô process defined as

$$
X(t)=X(0)+\int_{0}^{t}\binom{\dot{\alpha}(s)}{\psi(s)} d s+\int_{0}^{t}\binom{0}{\phi(s)} d B(s),
$$

with

$$
\psi(s)=2 \quad \text { and } \quad \phi(s)=2\left(B_{1}(s) \quad B_{2}(s)\right)
$$

Introduce the function $f(a, c)=a c$, and note that

$$
f^{\prime}(a, c)=\left(\begin{array}{ll}
c & a
\end{array}\right) \quad \text { and } \quad f^{\prime \prime}(a, c)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

In addition $f(X(0))=\alpha(0) C(0)=0$. The Itô formula for the two-dimensional Itô process $X(t)=(\alpha(t), C(t))$ and for the function $f(a, c)=a c$, yields

$$
\begin{aligned}
& f(X(t))=f(X(0))+\int_{0}^{t} f^{\prime}(X(s))\left[\binom{\dot{\alpha}(s)}{\psi(s)} d s+\binom{0}{\phi(s)} d B(s)\right] \\
& +\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left(f^{\prime \prime}(X(s))\binom{0}{\phi(s)}\left(\begin{array}{ll}
0 & \left.\phi^{*}(s)\right)
\end{array}\right) d s\right. \\
& =\int_{0}^{t}\left(\begin{array}{ll}
C(s) & \alpha(s))
\end{array}\left[\binom{\dot{\alpha}(s)}{\psi(s)} d s+\binom{0}{\phi(s)} d B(s)\right]\right. \\
& +\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left(\begin{array}{cc}
0 & \phi(s) \phi^{*}(s) \\
0 & 0
\end{array}\right) d s,
\end{aligned}
$$

in other words

$$
\begin{aligned}
\alpha(t) C(t)= & \int_{0}^{t}[C(s) \dot{\alpha}(s)+2 \alpha(s)] d s \\
& +2 \int_{0}^{t} \alpha(s)\left[B_{1}(s) d B_{1}(s)+B_{2}(s) d B_{2}(s)\right]
\end{aligned}
$$

Finally

$$
\begin{aligned}
W(t)= & -\frac{1}{2} \alpha(t) C(t)+\beta(t) \\
= & \beta(0)+\int_{0}^{t}\left[\dot{\beta}(s)-\frac{1}{2} C(s) \dot{\alpha}(s)-\alpha(s)\right] d s \\
& -\int_{0}^{t} \alpha(s)\left[B_{1}(s) d B_{1}(s)+B_{2}(s) d B_{2}(s)\right]
\end{aligned}
$$

(vi) Finally, show that $Z(t)$ is an Itô process (and give its decomposition in terms of a usual integral and a stochastic integral).

Give ODE's that the functions $\alpha(t)$ and $\beta(t)$ should satisfy, for the usual integral vanish in the decomposition.

Note that $X(t)=(V(t), W(t))$ is a two-dimensional Itô process defined as

$$
X(t)=X(0)+\int_{0}^{t} \psi(s) d s+\int_{0}^{t} \phi(s) d B(s)
$$

with

$$
\psi(s)=\binom{-\frac{1}{2} u^{2} V(s) C(s)}{\dot{\beta}(s)-\frac{1}{2} C(s) \dot{\alpha}(s)-\alpha(s)}
$$

and

$$
\phi(s)=\left(\begin{array}{cc}
u \sin (u A(s)) B_{2}(s) & -u \sin (u A(s)) B_{1}(s) \\
-\alpha(s) B_{1}(s) & -\alpha(s) B_{2}(s)
\end{array}\right)
$$

Note that

$$
\phi(s) \phi^{*}(s)=\left(\begin{array}{cc}
u^{2} \sin ^{2}(u A(s)) & 0 \\
0 & \alpha^{2}(s)
\end{array}\right) C(s)
$$

Introduce the function $f(v, w)=v \exp \{w\}$, and note that

$$
f^{\prime}(v, w)=(\exp \{w\} \quad v \exp \{w\}) \quad \text { and } \quad f^{\prime \prime}(v, w)=\left(\begin{array}{cc}
0 & \exp \{w\} \\
\exp \{w\} & v \exp \{w\}
\end{array}\right)
$$

Note that

$$
\begin{aligned}
f^{\prime \prime}(X(s)) \phi(s) \phi^{*}(s) & =\left(\begin{array}{cc}
0 & \exp \{W(s)\} \\
\exp \{W(s)\} & Z(s)
\end{array}\right)\left(\begin{array}{cc}
u^{2} \sin ^{2}(u A(s)) & 0 \\
0 & \alpha^{2}(s)
\end{array}\right) C(s) \\
& =\left(\begin{array}{cc}
0 & \alpha^{2}(s) \exp \{W(s)\} \\
u^{2} \sin ^{2}(u A(s)) \exp \{W(s)\} & \alpha^{2}(s) Z(s)
\end{array}\right) C(s),
\end{aligned}
$$

and

$$
\operatorname{trace}\left(f^{\prime \prime}(X(s)) \phi(s) \phi^{*}(s)\right)=\alpha^{2}(s) Z(s) C(s)
$$

In addition $f(X(0))=V(0) \exp \{W(0)\}=\exp \{\beta(0)\}$.

The Itô formula for the two-dimensional Itô process $X(t)=(V(t), W(t))$ and for the function $f(v, w)=v \exp \{w\}$, yields

$$
\begin{aligned}
f(X(t))= & f(X(0))+\int_{0}^{t} f^{\prime}(X(s))[\psi(s) d s+\phi(s) d B(s)] \\
& +\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left(f^{\prime \prime}(X(s)) \phi(s) \phi^{*}(s)\right) d s \\
= & \exp \{\beta(0)\}+\int_{0}^{t}(\exp \{W(s)\} \quad V(s) \exp \{W(s)\}) \\
& {\left[\binom{-\frac{1}{2} u^{2} V(s) C(s)}{\dot{\beta}(s)-\frac{1}{2} C(s) \dot{\alpha}(s)-\alpha(s)} d s\right.} \\
& \left.+\left(\begin{array}{rr}
u \sin (u A(s)) B_{2}(s) & -u \sin (u A(s)) B_{1}(s) \\
-\alpha(s) B_{1}(s) & -\alpha(s) B_{2}(s)
\end{array}\right)\binom{d B_{1}(s)}{d B_{2}(s)}\right] \\
& +\frac{1}{2} \int_{0}^{t} \alpha^{2}(s) Z(s) C(s) d s,
\end{aligned}
$$

in other words

$$
\begin{aligned}
Z(t)= & \exp \{\beta(0)\} \\
& +\int_{0}^{t}\left[-\frac{1}{2} u^{2} Z(s) C(s)+\left(\dot{\beta}(s)-\frac{1}{2} C(s) \dot{\alpha}(s)-\alpha(s)\right) Z(s)+\frac{1}{2} \alpha^{2}(s) Z(s) C(s)\right] d s \\
& +\int_{0}^{t}(\exp \{W(s)\} \quad Z(s))\binom{u \sin (u A(s))\left[B_{2}(s) d B_{1}(s)-B_{1}(s) d B_{2}(s)\right]}{-\alpha(s)\left[B_{1}(s) d B_{1}(s)+B_{2}(s) d B_{2}(s)\right]}
\end{aligned}
$$

A sufficient condition for the usual integral to vanish is

$$
-\frac{1}{2} u^{2} Z(s) C(s)+\left(\dot{\beta}(s)-\frac{1}{2} C(s) \dot{\alpha}(s)-\alpha(s)\right) Z(s)+\frac{1}{2} \alpha^{2}(s) Z(s) C(s)=0
$$

or

$$
(\dot{\beta}(s)-\alpha(s)) Z(s)+\frac{1}{2}\left(-u^{2}-\dot{\alpha}(s)+\alpha^{2}(s)\right) Z(s) C(s)=0,
$$

which is satisfied, provided that the functions $\alpha(t)$ and $\beta(t)$ satisfy the following system of ODE's

$$
\begin{aligned}
& \dot{\beta}(s)=\alpha(s) \\
& \dot{\alpha}(s)=\alpha^{2}(s)-u^{2}
\end{aligned}
$$

(vii) Let $T>0$ be fixed. Check that the two functions

$$
\alpha(t)=u \tanh ((T-t) u) \quad \text { and } \quad \beta(t)=-\log \cosh ((T-t) u)
$$

satisfy the ODE's introduced in the answer to question (vi).

Here, 'tanh' denotes the hyperbolic tangent function.
\qquad Solution

Clearly

$$
\dot{\alpha}(t)=-u^{2}\left[1-\tanh ^{2}((T-t) u)\right]=-u^{2}+\alpha^{2}(t),
$$

and

$$
\dot{\beta}(t)=-\frac{-u \sinh ((T-t) u)}{\cosh ((T-t) u)}=u \tanh ((T-t) u)=\alpha(t) .
$$

(viii) Let $\alpha(t)$ and $\beta(t)$ be defined as in question (vii). Check that the process $Z(t)$ is a square-integrable martingale in this case.
\qquad
With this choice of the functions $\alpha(t)$ and $\beta(t)$, it holds

$$
\begin{aligned}
Z(t)= & \exp \{\beta(0)\} \\
& +\int_{0}^{t}(\exp \{W(s)\} \quad Z(s))\binom{u \sin (u A(s))\left[B_{2}(s) d B_{1}(s)-B_{1}(s) d B_{2}(s)\right]}{-\alpha(s)\left[B_{1}(s) d B_{1}(s)+B_{2}(s) d B_{2}(s)\right]} .
\end{aligned}
$$

For this expression to define a square-integrable martingale, the four integrands

$$
\exp \{W(s)\} \sin (u A(s)) B_{2}(s) \quad \text { and } \quad \alpha(s) Z(s) B_{1}(s),
$$

and

$$
\exp \{W(s)\} \sin (u A(s)) B_{1}(s) \quad \text { and } \quad \alpha(s) Z(s) B_{2}(s),
$$

should belong to $M^{2}([0, T])$, and it is enough to check that the first two integrands

$$
\exp \{W(s)\} \sin (u A(s)) B_{2}(s) \quad \text { and } \quad \alpha(s) \exp \{W(s)\} \cos (u A(s)) B_{1}(s),
$$

belong to $M^{2}([0, T])$. Note that $\alpha(s) \geq 0, \beta(s) \leq 0$ and $C(s) \geq 0$ for any $0 \leq s \leq T$, hence $W(s) \leq 0$ and $0 \leq \exp \{W(s)\} \leq 1$ for any $0 \leq s \leq T$. Note also that $0 \leq \alpha(s) \leq \alpha(0)$ for any $0 \leq s \leq T$. Therefore

$$
\left|\exp \{W(s)\} \sin (u A(s)) B_{2}(s)\right| \leq\left|B_{2}(s)\right|,
$$

and

$$
\left|\alpha(s) \exp \{W(s)\} \cos (u A(s)) B_{1}(s)\right| \leq \alpha(0)\left|B_{1}(s)\right| .
$$

(ix) Conclude and check that

$$
\mathbb{E}[\exp \{i u A(t)\}]=\frac{1}{\cosh (u t)} .
$$

holds for any real number u.

It holds

$$
\mathbb{E}[Z(T)]=\mathbb{E}[Z(0)]
$$

since $Z(t)$ is a square-integrable martingale, and note that

$$
Z(T)=V(T) \exp \left\{-\frac{1}{2} \alpha(T) C(T)+\beta(T)\right\}=\cos (u A(T))
$$

and

$$
Z(0)=V(0) \exp \left\{-\frac{1}{2} \alpha(0) C(0)+\beta(0)\right\}=\exp \{\beta(0)\}=\frac{1}{\cosh (u T)}
$$

hence

$$
\mathbb{E}[\exp \{i u A(T)\}]=\mathbb{E}[\cos (u A(T))]=\mathbb{E}[Z(T)]=\mathbb{E}[Z(0)]=\frac{1}{\cosh (u T)}
$$

for any real number u.

