Bearings-Only Tracking in Modified Polar Coordinate System :
 Initialization of the Particle Filter and Posterior Cramér-Rao Bound

Thomas Brehard (IRISA/CNRS), Jean-Pierre Le Cadre (IRISA/CNRS).

Journée AS 67 Méthodes Particulaires
Applications du Filtrage Particulaire
ENST
3 December 2003

Summary

1. What is the Bearings-Only Tracking problem?
2. Solving using particle filtering algorithm...
3. From cartesian to modified polar coordinate system.
4. Initialization of the particle filtering algorithm.
5. Posterior Cramér-Rao bound.
6. Conclusion.

1. What is the Bearings-Only Tracking problem ? (1/2)

Fig. 1 - Trajectories of the observer (pink) and the target (blue) and simulated bearing measurements.

$$
X(t)=\left(\begin{array}{c}
X_{1}(t) \\
X_{2}(t) \\
X_{3}(t) \\
X_{4}(t)
\end{array}\right)=\left(\begin{array}{c}
v_{x}(t) \\
v_{y}(t) \\
r_{x}(t) \\
r_{y}(t)
\end{array}\right) \quad Z_{t} \approx \tan \left(\frac{r_{y}(t)}{r_{x}(t)}\right)
$$

- X_{t} is the target state at time t composed of relative velocity and position of the target in the $x-y$ plane
- Z_{t} is the bearing measurement received at time t.
Problem : Estimate X_{t} using $\left\{Z_{1}, \ldots, Z_{t}\right\}$.

1. What is the bearings-only tracking problem ?(2/2)

The stochastic system :

$$
\left\{\begin{array}{l}
X_{t+1}=A X_{t}+H U_{t}+W_{t} \\
Z_{t}=G\left(X_{t}\right)+V_{t}
\end{array}\right.
$$

where :

- X_{t} is the target state at time t composed of relative velocity and position of the target in the $x-y$ plane,
- Z_{t} the bearing measurement received at time t,
- U_{t} is the known difference between observer velocity at time $t+1$ and t.
- V_{t} has a center normal distribution with variance σ_{v} known.
- W_{t} has a center normal distribution with covariance matrix Q known.

This is a non-linear filtering problem which can be solved using particle filtering algorithm!

2. Solving using particle filtering algorithm...

At each step of time :

1. Propagating the set of particles using the state equation.
2. Weighting each of the particles using the measurement equation.
3. Resampling step.

Reference : Doucet et al. (2001)

Problem
Particles must be properly initialized !

3. From cartesian to modified polar coordinate system (1/3)

There is an unobservability problem hidden in the cartesian formulation of the system :

$$
\left\{\begin{array}{l}
X_{t+1}=A X_{t}+H U_{t}+W_{t} \\
Z_{t}=G\left(X_{t}\right)+V_{t}
\end{array}\right.
$$

Problem

The range is unobservable until the observer has maneuvered.

Solution
A coordinate system more suited to the problem : the modified polar coordinate system

3. From cartesian to modified polar coordinate system (2/3)

The modified polar coordinates

$$
Y(t)=\left(\begin{array}{c}
Y_{1}(t) \\
Y_{2}(t) \\
Y_{3}(t) \\
Y_{4}(t)
\end{array}\right)=\left(\begin{array}{c}
\dot{\beta}(t) \\
\frac{\dot{r}(t)}{r(t)} \\
\beta(t) \\
\frac{1}{r(t)}
\end{array}\right)
$$

We can show that :

- $Y_{4}(t)$ is unobservable until the observer has not maneuvered.
- $Y^{r}(t)=\left(\begin{array}{c}Y_{1}(t) \\ Y_{2}(t) \\ Y_{3}(t)\end{array}\right)=\left(\begin{array}{c}\dot{\beta}(t) \\ \frac{\dot{r}(t)}{r(t)} \\ \beta(t)\end{array}\right)$ is always observable.

3. From cartesian to modified polar coordinate system (3/3)

Before the observer maneuvers, the stochastic system in modified polar coordinate system is

$$
\left\{\begin{array}{l}
Y_{t+1}^{r}=F\left(Y_{t}^{r}, \tilde{W}_{t}\right), \\
Y_{4}(t+1)=H\left(Y_{t}, \tilde{W}_{t}\right), \\
Z_{t}=Y_{3}(t)+V_{t}
\end{array}\right.
$$

where

$$
\tilde{W}_{t}=Y_{4}(t) W_{t}
$$

and W_{t} has a center normal distribution with covariance matrix Q known.

An interesting model :
This is a non linear filtering problem with unknown covariance state ($Y_{4}(t)$ is unknown !).

4. Initialization of the particle filtering algorithm (1/7)

2 key ideas:

- We can proove that if the target has a deterministic trajectory then for all k

$$
Z\left(t_{0}+k\right)=Y_{3}\left(t_{0}\right)+\tan ^{-1}\left(\frac{k \delta_{t} Y_{1}\left(t_{0}\right)}{1+k \delta_{t} Y_{2}\left(t_{0}\right)}\right)+V_{k}
$$

It is just an optimization problem.
The observable components $Y_{t_{0}}^{r}$ can be estimated using the set of measurements $\left\{Z_{t_{0}}, \ldots, Z_{t_{0}+K}\right\}$.

- We only assume a prior information on the unobservable component $Y_{4}\left(t_{0}\right)$:

$$
\frac{1}{R_{\max }} \leq Y_{4}\left(t_{0}\right) \leq \frac{1}{R_{\min }}
$$

4. Initialization of the particle filtering algorithm (2/7)

Initialization of the particle filtering algorithm
Wait until time $t_{0}+K$, the particule i is initialized by
1.

$$
\left(\begin{array}{c}
Y_{1}^{(i)}\left(t_{0}\right) \\
Y_{2}^{(i)}\left(t_{0}\right) \\
Y_{3}^{(i)}\left(t_{0}\right)
\end{array}\right) \sim C A\left(\hat{Y}_{t_{0}}^{r}\right),
$$

where

- $\hat{Y}_{t_{0}}^{r}$ is computed using a Gauss-Newton optimization algorithm (initialized by linear regression).
- $C A\left(\hat{Y}_{t_{0}}^{r}\right)$ is the confidence area of $\hat{Y}_{t_{0}}^{r}$ (approximated by an hyperellipsoid).

2.

$$
Y_{4}^{(i)}\left(t_{0}\right) \sim \frac{1}{\mathcal{U}\left[R_{\min }, R_{\max }\right]}
$$

4. Initialization of the particle filtering algorithm (3/7)

Two important points

- Before the observer maneuvers,
the observable component of the particles $\left(\begin{array}{l}Y_{1}^{(i)}(t) \\ Y_{2}^{(i)}(t) \\ Y_{3}^{(i)}(t)\end{array}\right)$ and the unobservable component of the particles $Y_{4}^{(i)}(t)$ must be resampled independently!
- How the initialization time K can be fixed ?
"The particle filtering algorithm is initialized as soon as the volume of the confidence area for $Y_{t_{0}}^{r}$ is sufficiently small to be filled by N particles".

4. Initialization of the particle filtering algorithm (4/7)

Simulation scenario

$$
X_{0}^{\text {target }}=\left(\begin{array}{c}
10 \mathrm{~ms}^{-1} \\
-2 \mathrm{~ms}^{-1} \\
0 \mathrm{~m} \\
10000 \mathrm{~m}
\end{array}\right), X_{0}^{\text {obs }}=\left(\begin{array}{c}
-6 \mathrm{~ms}^{-1} \\
3 \mathrm{~ms}^{-1} \\
10000 \mathrm{~m} \\
0 \mathrm{~m}
\end{array}\right) .
$$

The observer follows a leg-by-leg trajectory. His velocity vector is constant on each leg and modified at the two following instants :

$$
\binom{V_{x}^{\text {obs }}(2100)}{V_{x}^{\text {obs }}(2100)}=\binom{10 \mathrm{~ms}^{-1}}{2 \mathrm{~ms}^{-1}},\binom{V_{x}^{\text {obs }}(3900)}{V_{x}^{\text {obs }}(3900)}=\binom{-10 \mathrm{~ms}^{-1}}{2 \mathrm{~ms}^{-1}} .
$$

$t=1800 s$

$t=3600 s$

$t=5400 s$

Trajectories of the observer (pink) and the target (blue).

4. Initialization of the particle filtering algorithm (5/7)

Simulation scenario

Simulated bearing measurements.
The measurement standard deviation is 0.05 rad (about 3 deg).
Parameters for the particle filtering algorithm

- Number of particles : 10000,
- Sampling threshold : 0.5,

The single assumption : $R_{\min }=1000 \mathrm{~m}$ and $R_{\max }=40000 \mathrm{~m}$.

4. Initialization of the particle filtering algorithm (6/7)

Simulation results in modified polar coordinates

True value (blue), Estimates (red), Confidence (green)
4. Initialization of the particle filtering algorithm (7/7)

Simulation results in cartesian system

Conclusion

- We have initialized the particle filtering algorithm using a weak prior on range.
- Performance analysis in polar modified coordinate system.

5. Posterior Cramér-Rao Bound (1/9)

Next step :
The performance analysis in modified polar coordinate system.

Tool :
The Posterior Cramér-Rao Bound (PCRB).
'"The PCRB gives a lower bound for the Mean Square Error"

5. Posterior Cramér-Rao Bound (2/9)

Notations : $Y_{0: t}=\left\{Y_{0}, \ldots, Y_{t}\right\}$ and $Z_{0: t}=\left\{Z_{0}, \ldots, Z_{t}\right\}$.

The bias

$$
B\left(Y_{0: t}\right)=E\left(g\left(Z_{0: t} \mid Y_{0: t}\right)\right)-Y_{0: t}
$$

where $g\left(Z_{0: t}\right)$ is the estimator of $Y_{0: t}$

The asymptotic bias assumption

$$
\begin{aligned}
\lim _{Y_{i}(j) \rightarrow y_{i}^{+}} & B\left(Y_{0: t}\right) p\left(Y_{0: t}\right)=\lim _{Y_{i}(j) \rightarrow y_{i}^{-}} B\left(Y_{0: t}\right) p\left(Y_{0: t}\right) \\
& \forall i \in\left\{1, \ldots, n_{y}\right\} \text { and } j \in\{0, \ldots, t\}
\end{aligned}
$$

where
$-\mathcal{Y}_{i}$ is the state space of $Y_{i}(j)$ for all j in $\{0, \ldots, t\}$,
$-\mathcal{Y}_{i}^{-}$and \mathcal{Y}_{i}^{+}are the endpoints of \mathcal{Y}_{i}

5. Posterior Cramér-Rao Bound (3/9)

Proposition 1
Under the asymptotic bias assumption,

$$
E C M_{0: t} \succcurlyeq J_{0: t}^{-1}
$$

where

$$
\begin{aligned}
E C M_{0: t} & =E\left\{\left(Y_{0: t}-g\left(Z_{0: t}\right)\right)\left(Y_{0: t}-g\left(Z_{0: t}\right)\right)^{t}\right\} \\
J_{0: t} & =E\left\{-\Delta_{Y_{0: t}}^{Y_{0: t}} \ln p\left(Z_{0: t}, Y_{0: t}\right)\right\}
\end{aligned}
$$

and $g\left(Z_{0: t}\right)$ is the estimator of $Y_{0: t}$.

In the filtering context, we only want to approximate the right lower block of $J_{0: t}$ noted J_{t}.

5. Posterior Cramér-Rao Bound (4/9)

Using Tichavsky et al. results, we have

$$
J_{t+1}=D_{t}^{22}-D_{t}^{21}\left(J_{t}+D_{t}^{11}\right)^{-1} D_{t}^{12}
$$

where

$$
\begin{aligned}
D_{t}^{11} & \left.=E\left\{\nabla_{Y_{t}} \ln p\left(Y_{t+1} \mid Y_{t}\right) \nabla_{Y_{t}}^{t} \ln p\left(Y_{t+1} \mid Y_{t}\right)\right\}\right\} \\
D_{t}^{21} & =E\left\{\nabla_{Y_{t+1}} \ln p\left(Y_{t+1} \mid Y_{t}\right) \nabla_{Y_{t}}^{t} \ln p\left(Y_{t+1} \mid Y_{t}\right)\right\} \\
D_{t}^{12} & =E\left\{\nabla_{Y_{t+1}} \ln p\left(Y_{t+1} \mid Y_{t}\right) \nabla_{Y_{t+1}}^{t} \ln p\left(Y_{t+1} \mid Y_{t}\right)\right\} \\
D_{t}^{22} & =E\left\{\nabla_{Y_{t+1}} \ln p\left(Y_{t+1} \mid Y_{t}\right) \nabla_{Y_{t+1}}^{t} \ln p\left(Y_{t+1} \mid Y_{t}\right)\right\} \\
& +E\left\{\nabla_{Y_{t+1}} \ln p\left(Z_{t+1} \mid Y_{t+1}\right) \nabla_{Y_{t+1}}^{t} \ln p\left(Z_{t+1} \mid Y_{t+1}\right)\right\} .
\end{aligned}
$$

Conclusion :

J_{t} can be computed recursively .
$\mathrm{Rq}: D_{t}^{11}, D_{t}^{12}, D_{t}^{22}, D_{t}^{21}$ are approximated using Monte Carlo method and $J\left(t_{0}\right)$ is obtained by a Cramér-Rao Bound.

5. Posterior Cramér-Rao Bound (5/9)

Simulation results

Problem:
The PCRB seems over optimistic...

Hypothesis :

- Is the asymptotic bias assumption true?
- Is $J_{0: t}$ ill-conditionned due to range unobservability?

5. Posterior Cramér-Rao Bound (6/9)

Is the asymptotic bias assumption true ?

A more general bound :

$$
E C M_{0: t} \succcurlyeq C_{0: t} J_{0: t}^{-1} C_{0: t}^{t}
$$

where

$$
C_{0: t}=E\left\{\left(g\left(Z_{0: t}\right)-Y_{0: t}\right) \nabla_{Y_{0: t}}^{t} \ln p\left(Z_{0: t}, Y_{0: t}\right)\right\} .
$$

Remarks :

- $C_{0: t}$ can be approximated using Monte Carlo approximation.
- The recursive formulation of the PCRB is no longer valid.

5. Posterior Cramér-Rao Bound (7/9)

Is the asymptotic bias assumption true ?
Simulation results

Solution :
The asymptotic bias assumption is not true in the bearings-only tracking problem.

5. Posterior Cramér-Rao Bound (8/9)

Problem:
The posterior Cramér-Rao bound seems over optimistic...

Hypothesis:

- Is the asymptotic bias assumption true ? No
- Is $J_{0: t}$ ill-conditionned due to range unobservability?

5. Posterior Cramér-Rao Bound (9/9)

$$
\text { Is } J_{0: t} \text { ill-conditionned due to range unobservability? }
$$

Idea : We only construct a bound for the observable components of the state Y_{t}^{r}.

We can proove that:

$$
E C M_{0: t}^{r} \succcurlyeq E\left\{C_{0: t}\left(Y_{4}\left(t_{0}\right)\right) J_{0: t}^{-1}\left(Y_{4}\left(t_{0}\right)\right) C_{0: t}^{t}\left(Y_{4}\left(t_{0}\right)\right)\right\} .
$$

where

$$
\begin{aligned}
J_{0: t}\left(Y_{4}\left(t_{0}\right)\right) & =E\left\{-\Delta_{Y_{0: t}}^{Y_{0, t}^{r}} \ln p_{Y_{4}\left(t_{0}\right)}\left(Z_{0: t}, Y_{0: t}^{r}\right) \mid Y_{4}\left(t_{0}\right)\right\}, \\
C_{0: t}\left(Y_{4}\left(t_{0}\right)\right) & =E\left\{\left(g^{r}\left(Z_{0: t}\right)-Y_{0: t}^{r}\right) \nabla_{Y_{0: t}^{r}}^{t} \ln p_{Y_{4}\left(t_{0}\right)}\left(Z_{0: t}, Y_{0: t}^{r}\right) \mid Y_{4}\left(t_{0}\right)\right\} .
\end{aligned}
$$

It is possible to approximate $J_{0: t}\left(Y_{4}\left(t_{0}\right)\right)$ and $C_{0: t}\left(Y_{4}\left(t_{0}\right)\right)$.

6. Conclusion

We have proposed :

- An initialization method for particle filtering algorithm using modifed polar coordinates using a weak prior on range.
- A new interpretation of the Bearings-Only Tracking problem.
- A realistic posterior Cramér-Rao bound in modified polar coordinate system.

Perspectives:

-3 D target tracking.

- Maneuvering target.

