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Summary

1. What is the Bearings-Only Tracking problem ?

2. Solving using patrticle filtering algorithm...

3. From cartesian to modified polar coordinate system.
4. Initialization of the particle filtering algorithm.

5. Posterior Crarar-Rao bound.

6. Conclusion.



1. What is the Bearings-Only Tracking problem ? (1/2)

miinate in meters

FIG. 1 —Trajectories of the observer (pink) and the target (blue) and simulated bearing measurements.
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e X, Is the target state at tintecomposed of relative velocity and position of the target
in thex — y plane

e 7, is the bearing measurement received at time

Problem EstimateX; using{Z, ..., Z;}.



1. What is the bearings-only tracking problem ?(2/2)

The stochastic system :

Xt+1 = AXt + HUt + Wt
Zy = G(Xt) + Vi

where :

e X, is the target state at timtecomposed of relative velocity and position of the
target in ther — y plane,

e /, the bearing measurement received at timne

e U, is the known difference between observer velocity at tirrel andt.

e V, has a center normal distribution with variarceknown.

e IV, has a center normal distribution with covariance maftiknown.

This is a non-linear filtering problem which can be solved using particle filtering
algorithm!



2. Solving using particle filtering algorithm...

At each step of time :

1. Propagating the set of particles using the state equation.
2. Weighting each of the particles using the measurement equation.
3. Resampling step.

Reference : Doucet et al. (2001)

Problem

Particles must be properly initialized !



3. From cartesian to modified polar coordinate system (1/3)

There is an unobservability problem hidden in the cartesian formulatiot
of the system :

X, = AX, + HU, + W,
Zy = G(Xy) +V;

Problem
The range is unobservable until the observer has maneuvered.

Solution

A coordinate system more suited to the problem :
the modified polar coordinate system

Reference : Aidala and Hammel (1983)



3. From cartesian to modified polar coordinate system (2/3)

The modified polar coordinates

We can show that :

e Y,(t) is unobservable until the observer has not maneuvered.

Yi(t) B(t)
o V'(t)=| Yat) | = | 54 | isalways observable.
Y3(¢) 3(t)



3. From cartesian to modified polar coordinate system (3/3)

Before the observer maneuvers, the stochastic system in modified polar coordine
system is

Y, = FY7, W),
n(t+8) H(Y,, W),

where
Wt - Y4(t)Wt
andWV; has a center normal distribution with covariance mafgiknown.
An interesting model :

This is a non linear filtering problem with unknown covariance state
(Yy(t) is unknown!).



4. Initialization of the particle filtering algorithm (1/7)

2 key ideas

— We can proove that if the target has a deterministic trajectory then fo
all &

Z(t() + ]C) = }/?,(t()) + tan ! ( kat}q(t(o ) + Vi

1+ k&, Ya(to)

It is just an optimization problem.
The observable componerts can be estimated using the set of
measurementSZ, . ..., Zy, 1k }-

— We only assume a prior information on the unobservable componer
Yi(to) :

1 1
< Yi(ty) <
Rmax - 4( O) o Rmin




4. Initialization of the particle filtering algorithm (2/7)
Initialization of the particle filtering algorithm

Wait until timet, + K, the particule is initialized by
1.

where

— Ytg Is computed using a Gauss-Newton optimization algorithm
(initialized by linear regression).
— CA(Y}) is the confidence area ®f (approximated by an hyperellipsoid).

1
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4. Initialization of the particle filtering algorithm (3/7)

Two important points

— Before the observer maneuvers,
Y(t)
the observable component of the particl sY;(Z)(t) and the unobservable

| Y3 (t)
component of the particIeSéf) (t) must be resampled independently !

— How the initialization time K can be fixed ?

"The particle filtering algorithm is initialized as soon as the volume of the
confidence area far;’ is sufficiently small to be filled by N particles”.



4. Initialization of the particle filtering algorithm (4/7)

Simulation scenario
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The observer follows a leg-by-leg trajectory. His velocity vector is constant on each leg and modifie
at the two following instants :
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t = 1800s t = 3600s t = 5400s
Trajectories of the observer (pink) and the target (blue).



4. Initialization of the particle filtering algorithm (5/7)

Simulation scenario
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Simulated bearing measurements.
The measurement standard deviation is 0.05 rad (about 3 deg).

Parameters for the particle filtering algorithm

— Number of particles : 10000,
— Sampling threshold : 0.5,

The single assumptionR,,;, = 1000 m andR,,,,, = 40000 m.



4. Initialization of the particle filtering algorithm (6/7)

Simulation results in modified polar coordinates
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4. Initialization of the particle filtering algorithm (7/7)

Simulation results in cartesian system

Rxcoodrnateinmeters ¢ Rxcoodnalemmetes ¢ Rxcoodnateinmeters

= 1800s t = 3600s t = 5400s
Trajectory of the observer (pink), trajectory of the true target (blue),

particles (red), confidence for the estimate (green).
Conclusion

— We have initialized the particle filtering algorithm using a weak prior on range.
— Performance analysis in polar modified coordinate system.



5. Posterior Crameér-Rao Bound (1/9)

Next step:

The performance analysis in modified polar coordinate system.

Tool ;

The Posterior Cragr-Rao Bound (PCRB).

"The PCRB gives a lower bound for the Mean Square Error”



5. Posterior Cramér-Rao Bound (2/9)

Notations Yy, = {Ys,...,Y;} andZy, = {Z,, ..., Z:}.

The bias
B<Y0:t> =k (9(20:75‘}/0:75)) — You

whereg(Z,,) is the estimator o¥,

The asymptotic bias assumption

l‘im B(Yo:t)p(Yo;t) = l‘im _B(Y():t)p(yb:t)
Yi(5)—Y; Yi(5)—Y;

Vie{l,...,n,}andj € {0,...,t}

where
— ) is the state space of(j) for all j in {0, ... ¢},
— Y7 and);" are the endpoints Q¥



5. Posterior Cramér-Rao Bound (3/9)

Proposition 1
Under the asymptotic bias assumption,

ECMO:t i J()_;tl
where

ECMy; = E{(Yor — 9(Zo+))(Yor — 9(Zo))'}
JO:t - E{—A%i lnp(ZO:hYE):t)}

andg(Z.) is the estimator o¥,;.

In the filtering context, we only want to approximate the right lower blocldof
noted.J,.



5. Posterior Cramér-Rao Bound (4/9)
Using Tichavsky et al. results, we have

R =28 = P B

where
Dtn = E{thmP(YtH‘Yt)vg/tlnp(Y;H’Yt)}}a
D' = E{Vy,, Inp(Y.u|Y)Vi, Inp(Y|Y)},
Dt12 = E{Vy,, Inp(Yi|Y)) ifm In p(Y;41]Y7)},
Dt22 - E{VYZH hlp(}/t-f—l’Y;) §Q+1 hlp(}/t‘i‘l’Y;)}
+ E{Vy, 1np(Zt+1]Y;+1)V§/t+l Inp(Zi41|Yisa)}-
Conclusion:

J; can be computed recursively .

Rq : D}t, D}2?, D2, D?! are approximated using Monte Carlo method afit)) is obtained by a
Cranér-Rao Bound.



5. Posterior Cramér-Rao Bound (5/9)

Simulation results
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(Mean square error in blue, PCRB in red)

Problem:

The PCRB seems over optimistic...

Hypothesis

— Is the asymptotic bias assumption true ?
— Is Jy. ill-conditionned due to range unobservability ?



5. Posterior Cramér-Rao Bound (6/9)

Is the asymptotic bias assumption true ?

A more general bound :
ECMO:t % CO:tJQ_;tlcé;t
where

C(O:t — E{(.Q(Z()t) - }/O:t)vi/b:t lnp(ZO:tv }/Ot)}

Remarks :
— Cp.+ can be approximated using Monte Carlo approximation.
— The recursive formulation of the PCRB is no longer valid.



5. Posterior Cramér-Rao Bound (7/9)
Is the asymptotic bias assumption true ?

Simulation results
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(Mean square error in blue, classical PCRB in red, new PCRB in green)

Solution:

The asymptotic bias assumption is not true in the bearings-only tracking
problem.



5. Posterior Cramér-Rao Bound (8/9)

Problem:

The posterior Cragr-Rao bound seems over optimistic...

Hypothesis

— Is the asymptotic bias assumption trug@
— Is Jy.; ill-conditionned due to range unobservability ?



5. Posterior Cramér-Rao Bound (9/9)
Is Jy.; ill-conditionned due to range unobservability ?

ldea: We only construct a bound for the observable components of thelstate

We can proove that :

ECM, = E{Cu4(Ya(to))Joy (Ya(to))Ciu(Ya(to)) }.

where

Joa(Ya(to)) = E{—A% In pyyuo) (Zow, Yo IYa(to)},
Cos(Ya(to)) = E{(9"(Zox) — Y5.,) Vyr I Dy,00)(Zot, o) [ Ya(to) }-

It is possible to approximaté.;(Y;(ty)) andCq.(Yi(to)).



6. Conclusion

We have proposed :

— An initialization method for particle filtering algorithm
using modifed polar coordinates using a weak prior on range.

— A new interpretation of the Bearings-Only Tracking problem.
— A realistic posterior Cragr-Rao bound
in modified polar coordinate system.
Perspectives
— 3D target tracking.

— Maneuvering target.
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