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Abstract 

 
A new approach is used to determine the transient probability functions of the classical 
queueing systems: M/M/1, M/M/1/H, and M/M/1/H with catastrophes. This new solution 
method uses dual processes, randomization and lattice path combinatorics. The method 
reveals that the transient probability functions for M/M/1/H and M/M/1/H with catastrophes 
have the same mathematical form.  
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1. Introduction 
 

For over fifty years, determining new methods to obtain the transient probability 
functions of the classical single server queueing systems has captured and maintained the 
interest of theorists and practitioners alike. In this article, a new sample path approach that 
combines dual processes, randomization and lattice path combinatorics is used to obtain the 
transient probability functions of three single server queueing systems.   

Section 2 contains background material and some important results connecting the 
transition probability functions of a birth-death process and its dual process. The transient 
probability functions of the classical M/M/1 queueing system are re-derived using dual 
processes and the reflection principle in section 3.  In section 4, the transient probability 
functions of the M/M/1/H system are determined and formulated in terms of dual processes. 
The solution method again relies upon lattice path combinatorics instead of the traditional 
eigenvalue approach. Section 4 also contains an interesting formula for counting the number 
of lattice paths going from state j to state k in n steps confined within a given horizontal strip.   

The dual process approach generalizes to certain non birth-death processes.  In section 5, 
the transient probability functions of an M/M/1/H system with catastrophes is determined. The 
analysis is surprisingly related to a suitably modified solution of the M/M/1/H system as 
described in section 4. In this way, the dual process/randomization/lattice path combinatorics 
approach may unify the complicated analysis of finding transient probability functions for 
well known Markovian queueing systems. 

 
2. Dual Processes 
 

Consider a general birth-death process having transition birth rates iλ  for i = 0,1,2, … 
and transition death rates iµ   for i = 1,2,3,…as shown in the state rate transition diagram, 
Figure 1. All of these rates are assumed to be nonnegative numbers.  The state space may be 
finite or countable. 
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Our interest is to determine )(, tP ji , the transient probability functions where i, j = 0,1,2,3,…. 

For a finite or countable state space with uniformly bounded transition rates, )(, tP ji  is 
determined by solving the Kolmogorov backward or forward equations, see Bhattacharya and 
Waymire (1990) or Gross and Harris (1985). The result is a system of differential equations 
that may be written in matrix form as 
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is the matrix of transition probability functions and 
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is the transition rate matrix. In the finite dimensional case, the matrix form of the backward 
equation is well posed. However, in the infinite dimensional case, we assume throughout this 

Figure 1 
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article that the rates iλ , i=0,1,2,…and iµ , i=1,2,3,…are uniformly bounded.  This guarantees 
that the birth-death system has a unique transition probability solution (cf. Anderson (1991)). 
The solution of the Kolmogorov backward equation may then be written, see Bhattacharya 
and Waymire (1990), as  
 

QtetP =)(  
 

The dual process of the general birth-death process of Figure 1 has a state rate transition 
diagram as shown in Figure 2. 

 
 
 
 
 
 

Figure 2 
 
  
The transient probability functions of this dual process are denoted by )(*

, tP ji .  By Proposition 
2.3 on page 269 of Anderson (1991), the following relationship holds between a general birth-
death system and its dual. 
 
Theorem 1. If )(, tP ji  and )(*

, tP ji  are the transient probability functions of the Markov 
processes corresponding to Figure 1 and 2 respectively, then   
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for all states i, j = 0,1,2,3… with the convention )(*

,1 tP k− = 0 if k > -1. 
 
The proof of this result is nicely presented in Anderson (1991) and depends upon the forward 
and backward equations and some algebraic simplifications.  Consequently, if the transient 
probability functions in either the original birth-death process or dual system are known, then 
the transient probability functions in the other system are as well.  
 
Corollary 1.  If )(, tP ji  and )(*

, tP ji are the transient probability functions corresponding to the  
Markov processes depicted in Figures 1 and 2 respectively, then 
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for all states i, j = 0,1,2,3… with the convention )(*

,1 tP k− = 0 if k > -1. 
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For the general birth-death process (Figure 1), a Markov chain called the associated 

randomized chain (Figure 3) is considered. 
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,...3,2,1=i with b chosen such that bii ≤+ µλsup < ∞  and by convention, 0µ = 0.  The 
following theorem, called randomization (or uniformization), is a well-known result used 
primarily for the numerical computation of the transition probability functions )(, tP ji  of a 
Markov process, (cf., Gross and Harris (1985).  It applies for the preceding birth death 
processes of Figure 1 and, more generally, for any Markov process (with countable state 
space) having uniformly bounded diagonal transition rates in the Q matrix. 
 
Theorem 2. (Randomization) Suppose a Markov process (on a countable state space) has 
transition rate matrix Q with ∞<≤

≥
bq

i
ii,

0
sup  then the transition probability functions, )(, tP ji , 

may be written as  
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for i, j=0,1,2,3, … 

where )(
,
n
jiP  is the n-step transition probability of the associated randomized Markov chain. 

 
It should be noted that )(, tP ji  is completely determined once )(

,
n
jiP  is “known”.  For examples 

of solving for )(, tP ji  by finding )(
,
n
jiP , see Bohm et al. (1997), Chang et al. (2004), Green et al. 

(2003), Krinik et al. (1997) and Leguesdron et al. (1993). 
  
It is also necessary to randomize the dual process in Figure 2, obtaining 
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Figure 3 
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where )*(
,

n
jiP  is the n-step transition probability of the Markov Chain shown in the diagram 

below.  
 
    
 
 
 
 
 
 
 

where 
b

p i
i

λ
= , 

b
q i

i
µ

= , 11 +−−= iii qpρ  for ,...3,2,1,0=i and b is greater than or equal to the 

supremum of the absolute value of the diagonal rates of *Q .  Note the assumption that the 
transition rates in Q are uniformly bounded implies a common value, b, for the randomizations 
of the processes, appearing in both Figures 1 and 2, can be found. 

 
3. The M/M/1 Queueing System 
 

We now consider the classical single server queueing system, M/M/1, seen in Figure 5.  
The birth (or arrival) rates and the death (or service) rates are positive constants represented 
by λ  and µ  respectively.  The state space of natural numbers represents the number of 
customers in the queue at any time t.  )(, tP ji  represents the transient probability functions, for 
i, j = 0, 1, 2, 3,… in the following state rate transition diagram. 

 
 
 
 
 
 
 
 
 
The associated randomized Markov chain is shown in the following state transition probability 
diagram. 
 
 
 
 
 
 
 
 

Figure 5 

Figure 6 

Figure 4 
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, tP ji  are the transient probability functions of 

the dual M/M/1 process 
 
 
 
 
 
 
 
 
The randomized Markov chain of Figure 7 is shown in Figure 8. 
 
 
 
 
 
 
 
 
 
By Randomization, with µλ +=b , the transition probability functions are  
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In order to obtain the transient probabilities for the M/M/1 system, we 

calculate )*(
,

n
kjP for 0, ≥kj . The advantage of the dual process approach is the facility in 

counting sample paths in Figure 8 as compared to sample paths in Figure 6, see Krinik et al. 
(1997).  To find )*(

,
n

kjP , the sample paths in Figure 8 going from state j to state k in n-steps 
need to be counted.  These sample paths may be visualized, for example, as a lattice path 
(Figure 9), where it is assumed here that jkn −≥ .   
 
 
 
 
 
 
 
 
 
 
 

Figure 7 

Figure 8 
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Note that u + d = n and u - d = k - j where u is the number of upward steps and d is the number 
of downward steps.  Solving for u and d gives 
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2
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so  
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n
kjP = (number of sample paths from j to k in n-steps) du pq⋅ . 

 
To count the number of sample paths going from j to k in Figure 8 in n-steps, the 

associated lattice paths are counted. However, some lattice paths are not realizable as a sample 
path as seen in Figure 8. For example, the black lattice path from j to k drawn in Figure 10 is 
such a path. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fortunately, these types of lattice paths may be counted by means of a one-to-one 
correspondence with lattice paths going from starting point –j-2 to destination k in n-steps 
(shown in Figure 10 as the dashed/black lattice path). This is the well known reflection 
principle, see Mohanty (1979) or Narayana (1979) which leads to  
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+++−−+

2

2

2

jkn

n

jkn

n

. 

x

j
x  

2−− j  

k
 

Figure 10 
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for 0, ≥kj . Note this expression equals 0 when jkn −<  using the usual conventions 
concerning binomial coefficients.  By Theorem 2 (Randomization),  
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for ,...2,1,0=i and ,...2,1=j  and 
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for ,...2,1,0=i . The preceding expressions are explicit solutions of the transient probability 
functions, )(, tP ji , for the classical M/M/1 queueing system. These results are equivalent to 
expressions appearing in Bohm et al. (1997), Krinik et al. (1997) and Leguesdron et al. 
(1993); see Lam (2004) for verification of this equivalence. The dual process with 
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randomization approach provides a simplification of the analysis presented in Krinik et al. 
(1997) and Leguesdron et al. (1993). Note the preceding expressions may be written in 
randomized form as 
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where )(

,
n
jiP  is the n-step transition probability from i to j on Figure 6 where ,...2,1,0=i and 

,...2,1=j .  Note by our conventions, two of the binomial coefficients within this summand 
vanish for any given n and k. And 
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where )(

0,
n

iP  is the n-step transition probability from i to 0 on Figure 6 where ,...2,1,0=i .  

Alternative expressions for )(, tP ji , )(0, tPi , )(
,
n
jiP , )(

0,
n

iP  in terms of a finite summation over k 
from -1 to i-1 may be found by using Corollary 1 in place of Theorem 1.  Details of this 
alternative development for M/M/1 may be found in Lam (2004).  The Corollary 1 approach is 
also demonstrated in the next section to find the transient probability functions of the 
M/M/1/H queueing system.      
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4. The M/M/1/H Queueing System 
 
We now consider the classical single server queueing system having finite capacity H, 
M/M/1/H, seen in Figure 11.  The birth (or arrival) rates and the death (or service) rates are 
positive constants represented by λ  and µ  respectively.  The state space 
{ }H,...,2,1,0 represents the number of customers in the queue at any time t.  )(, tP ji  represents 
the transient probability functions, for i, j = 0, 1, 2, 3,…,H in the following state rate transition 
diagram. 
 
                                       

 
 
 
     
 
 
The associated randomized Markov chain is shown in the following state transition probability 
diagram. 
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, tP ji  denote the transient probability functions of the dual M/M/1/H process having 

transition rate diagram in Figure 13. 
 
 
 
 
 
 
 
 
The randomized Markov chain of the process depicted in Figure 13 is shown in Figure 14. 
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By randomization, with µλ +=b , the transition probability functions are  
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In order to obtain the transient probabilities for the M/M/1/H system using Corollary 1 of 
section 2, we again need to calculate )*(
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kjP .  For now, assume j, k are restricted to the 
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from state j to state k in n-steps in Figure 14. These sample paths may be visualized as lattice 
paths confined to a horizontal strip bounded by lines y = -1 and y = H as shown in Figure 15. 
The paths never touch either of these boundaries. In order to determine )*(
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The result follows by realizing that ∑
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For reference, we state this result as the following proposition. According to Mohanty (1979), 
a form of this result also appears in Kemperman (1961).   
 
Proposition 1.     Assume j and k are states in the following set { }1,...,2,1,0 −H  and suppose 

)()(

,
HL n

kj is the collection of all sample paths going from state j to state k in n-steps in Figure 
14.  These sample paths correspond to lattice paths that move up or down by one unit each 
step and are confined to the horizontal strip bounded by lines y = -1 and y = H, never touching 

either of these boundaries, see Figure 15. Then the number of lattice paths in )()(
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kj denoted 
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 is given by the following expression. 
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We now use our path counting result to determine the n-step transition probability of the 

randomized Markov chain pictured in Figure 14, see Lemma 2. Recall this Markov chain 
originates from the dual process. Transient probability functions for the transient states of the 
dual process will then follow as a consequence of randomization in Lemma 3. A special case 
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concerning the transient probability function of the dual process having absorbing state at -1 is 
then presented in Lemma 4. 

 
Lemma 2.   Suppose 10 −≤≤ Hj and 10 −≤≤ Hk .  The n-step transition probabilities, )*(

,
n

kjP , 
for the Markov chain corresponding to Figure14 is given by the following expression. 
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Proof. By the analysis following Figure 15, 
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where u and d are the number of upward and downward steps in getting from state j to state k  

in n steps. The formula from Proposition 1 for )()(
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 gives the result. 

 
Lemma 3.   Suppose 10 −≤≤ Hj and 10 −≤≤ Hk , then the transition probability functions, 
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, tP kj , for the dual Markov process corresponding to Figure 13 is given by the following 

expression. 
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Proof.  By Theorem 2 (Randomization) and Lemma 2,  
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Lemma 4. Suppose 10 −≤≤ Hj , then the transition probability functions, )(*

1, tPj − , for the 
dual Markov process corresponding to Figure 13 is given by the following expression. 
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Proof. Kolmogorov’s forward equation, 
*
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QtPtP
dt

d
⋅=  implies that )(
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1, tjPtjP
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Lemma 4 follows by substituting into this equation the expression given for )(*
0, tPj  from 

Lemma 3 and integrating term by term with respect to t.  The constant of integration is 

determined by the initial value 0)0(*
1, =−jP when  j  >  -1. 

 
Having determined the transient probability functions of the dual process, we are now in 

position to find the transient probability functions of the original M/M/1/H queueing system.  
 
Theorem 3. The transient probability functions )(, tP ji  of the M/M/1/H queueing system 
corresponding to Figure 11 are as follows.  
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Case 2.  0=i and 11 −≤≤ Hj  
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Case 3.  Hi ≤≤1 and 0=j  
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Case 4.  0=i  and 0=j  
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Case 5.  Hi ≤≤1 and Hj =  
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Case 6.  0=i and Hj =  
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Proof.  

Cases 1 and 2. 

The result follows from [ ] [ ]∑
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=
−−−− −+−=
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*
1,1, )()()()()(
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Corollary 1 and using Lemmas 3 and 4. In Case 2, the summation term is missing. 

Cases 3 and 4.   

Corollary 1 becomes [ ]∑
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1,00, )()(1)(

i

k
ki tPtPtP  because -1 is an absorbing state. The 

formula then follows as before by substituting expressions from Lemmas 3 and 4. In Case 4, 
the summation term is gone. 

Cases 5 and 6.  
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k
kHHHi tPtPtP  because H is an absorbing state and once 

again Lemmas 3 and 4 produce the preceding expression. In Case 6, the summation term is 
gone. 
 
Theorem 4 (Takacs).  The transient probability functions )(, tP ji  of the M/M/1/H queueing 
system corresponding to Figure 11 are as follows.  
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Proof.    The constant term in this theorem is most easily obtained by realizing it corresponds 
to the well-known steady state solution of the M/M/1/H queueing system, see Gross and 
Harris (1985). This constant term is also associated with the 0 eigenvalue of this system, see 
Krinik and Mortensen (2004).  The remaining portion of the transient probability function may 
be derived through algebraic manipulations of the solutions found in Theorem 3.  In particular, 
the following geometric series identity, 
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is useful in reducing the double sums appearing in Theorem 3 to a single sum expression. The 
remaining details may be found in Kasfy (2004). 
 

It is interesting to compare Theorem 3 and its derivation to the traditional method of 
solution see, for example, Theorem 1 on pages 13-21 of Takacs (1962) where )(, tP ji is 
determined using a linear algebraic, eigenvalue approach. In contrast, our approach here uses 
dual processes, randomization, lattice path combinatorics (Proposition 1) and the Taylor series 
expansion of the exponential function. 

 
5. M/M/1/H with Catastrophes  
 

In this section the classical M/M/1/H queueing system is modified to include a constant 
catastrophe rate,γ , which goes to state 0.  Catastrophes are assumed possible at any non-zero 
state, but with a constant rate, and when they occur, they reduce the queueing system to zero 
customers. The transitions are shown in the following state rate transition diagram, Figure 16.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the usual transition matrix of this system has dimension H+1 by H+1, we represent 
transitions in an augmented H+2 by H+2 matrix having rates as shown below.  The reason for 
such an enlarged Q-matrix is in anticipation of finding its dual process. 
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As before, the objective is to determine the unique transient probability functions, )(, tP ji , 

corresponding to Q.  Fortunately, the theory of dual processes has been developed past birth-
death processes and there is an extension of Corollary 1. Specifically, by a result of Kirstein 
(see Anderson (1991), Theorem 3.4, pages 248-249), )(, tP ji  is stochastically monotone for the 
M/M/1/H with catastrophe process and therefore by a theorem of Siegmund (see Anderson 
(1991), the argument within the proof of Proposition 4.1 and the remarks following the proof 
on pages 251-252), it follows that 
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In this section, we will refer to [ ]∑
=

+−=
i

k
kjkjji tPtPtP

0

*
,1

*
,, )()()(  as Siegmund’s equation.  

The state space of the dual process is { }1,...,2,1,0 +H  where “H+1” is the new added state 
(instead of “-1” as in section 2).  In this way, Siegmund’s equation, which connects the 
transition probability functions of the original and dual processes, is seen to be the same as 
Corollary 1 shifted to the right by a unit.  The dual process has transition rate diagram as given 
in Figure 17. 

 
 
 
 
 
 
 
 
 
 

 
Figure 17 

 
 

Randomizing this system gives the following randomized Markov Chain of the dual process. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 
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Noticing the similarity between Figures 14 and 18, the following results in analogy with the 
theorems of section 4 may be deduced. 
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Lemma 5.   Suppose Hj ≤≤1 and Hk ≤≤1 .  The n-step transition probabilities, )*(
,

n
kjP , for the 

Markov chain corresponding to Figure 18 is given by the following expression. 
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Proof.      The number of lattice paths from state j to state k restricted to the horizontal band 
strictly between 0 and H+1 equals the number of lattice paths from state (j-1) to state (k-1) 
confined to a horizontal band strictly between -1 and H . However by Proposition 1, there are 
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such paths.  The proof now proceeds as in Lemma 2. 

  
Lemma 6.   Suppose Hj ≤≤1 and Hk ≤≤1 , then the transition probability functions, )(*

, tkjP  

for the dual Markov process corresponding to Figure 17 is given by the following expression. 
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Proof.   By Theorem 2 (Randomization) and Lemma 5,  
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by the Taylor series for { } ∑
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Lemma 7. Suppose Hj ≤≤1 , then the transition probability functions, )(*

0, tPj , for the dual 
Markov process corresponding to Figure 17 is given by the following expression. 
 

=)(*
0, tPj  

 










































































−++−
+

∑
+

= ++

−

++−
+

+−−

+
1)(

1
cos2exp

1

1 1
sin

1
sin

1

)(
1

cos22

1

2

1

1

2
t

H

uH

u H

u

H

ju

H

u
j

p

j

q
H

γµλ
π

λµ
ππ

γµλ
π

λµ
λ

 

Proof.  Kolmogorov’s forward equation, 
*
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QtPtP
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d
⋅= implies that )(
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0, tjPtjP

dt

d
λ= .  

)(*
1, tPj is known from Lemma 6 and )(*

0, tPj  may be determined by integrating with respect to t 
as in Lemma 4. The constant of integration is once again determined by the initial value 

0)(*
0, =tPj which holds for j > 0. 

 
Again having determined the transient probability functions of the dual process, we may 

now substitute into Siegmund’s equation, [ ]∑
=

+−=
i

k
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*
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*
,, )()()( , to find the transient 

probability functions of the M/M/1/H with catastrophe queueing system.  
 
 

Theorem 5. The transient probability functions, )(, tP ji , of the M/M/1/H system with 

catastrophes  corresponding to Figure 16 are as follows, where 
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Case 2.  0=i and 11 −≤≤ Hj  
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Case 3.  Hi ≤≤1 and 0=j  
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Case 4.  0=i and 0=j  
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Case 5.  Hi ≤≤1 and Hj =  
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Case 6.  0=i and Hj =  
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Proof. 
  
Cases 1 and 2.    
 
The result follows from  

[ ] [ ]∑
=
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i

k
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and using Lemmas 6 and 7. In Case 2, the summation term is gone. 
 
Cases 3 and 4.  

Siegmund’s equation becomes [ ] ∑
=

−−=
i

k
ki tPtPtP

1

*
,1

*
0,10, )()(1)(  because 0 is an absorbing 

state. The formula then follows as before by substituting expressions from Lemmas 6 and 7. In 
Case 4, the summation term is missing. 
 
Cases 5 and 6.  
 

Now [ ]∑
=

+=
i

k
kHHHi tPtPtP

1

*
,

*
0,, )()()(  because H +1 is an absorbing state and once again Lemmas 6 

and 7 produce the preceding expression. In Case 6, the summation term is gone. 
 
This completes the proof of Theorem 5. 
 

The close connection between the transient solutions of M/M/1/H and M/M/1/H with 
catastrophes becomes clear when looking at Figures 14 and 18.  The path counting is the 
same, only the probabilities are re-normalized.  Our path counting results would have 
appeared exactly the same for each system had Siegmund’s equation been used throughout 
this article in place of Corollary 1.  This leaves the natural remaining issue of whether Takac’s 
Theorem 4 generalizes in a straightforward way to M/M/1/H with catastrophes?  The answer 
is yes and is given in Theorem 6 which unifies the different cases of transient probability 
functions listed within Theorem 5. 

 
Theorem 6.  Suppose µλγ ,,  > 0 then the transient probability functions, )(, tP ji , for 

Hi ≤≤0 and Hj ≤≤0 , of the M/M/1/H with catastrophes system shown in Figure 16 are as 
follows.  
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where 
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Proof.    The jj BrAr 21 +

 
term in this theorem corresponds to the steady state distribution of 

the M/M/1/H with catastrophes system. This distribution is determined by noting that the 
steady state distribution satisfies a linear, constant coefficient, second order recurrence 
relation. The remaining portion of the preceding transient probability function is derived 
through algebraic manipulations of the solutions found in Theorem 5 following the same 
arguments that produced Theorem 4 from Theorem 3; see Kasfy (2004) for complete details of 
this calculation.   

 
Remarks. 

 
1. It is intriguing to have two queueing systems, M/M/1/H and M/M/1/H with catastrophes, 

where we explicitly know the eigenvalues of Q by formula rather than having to compute 
them numerically. Further research to determine which Q matrices have eigenvalues 
following such pretty patterns would be worth while. 

 
2. Dual processes are proving to be a useful tool for finding transient probability functions in 

a variety of settings, see: Chang et al.(2004), Green et al.(2003), Krinik et al.(2002), 
Krinik and Mortensen (2004), Krinik et al.(2004). The main advantage of working with 
dual processes is that it is often easier to algebraically or combinatorially analyze 
absorbing Markov processes than recurrent Markov processes. 
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