
1

1

Formalizing Interoperability
Testing

Alexandra DESMOULIN
IRISA / Université de Rennes 1

adesmoul@irisa.fr, http://www.irisa.fr

2

Introduction
n Interoperability test: verification of

the communication between the IUTs
and of the provided services

n Some existing attempts to formalize
interoperability but no precise
characterization.

n Interoperability test generation : no
method based on formal definitions

n Work presented here: one-to-one
context

n Future work: N>2

3

Plan
n Introduction
n Interoperability testing architecture(s)
n Model for the formalization
n Interoperability definitions in the one-

to-one context
n Interoperability test generation in the

one-to-one context
n Conclusion and perspectives

4

General interoperability
testing architecture

IUT1 IUT2

UI1

LI1 LI2

UI2

Lower Interface
SUT(System Under Test)

Tester (T1)

LT1

UT1

UP1

LP1

Tester (T2)

LT2

UT2

UP2

LP2

Test System (TS)

Test
architectures

5

Model of IOLTS and
notations

l!aU!B U!C

l?b l?c

System S1

Specifications S1 and S2
0

4

1

2

3

Upper
Interface U

Lower
Interface l

U?A
A B

C0

1

l?al!b

l!c

Model for the
formalization

b c
a

6

Some words about
conformance testing

Conformance relation ioconf:
I ioconf S =∀σ∈Traces(S) ⇒

Out(I,σ)⊆ Out(S,σ)

Traces(S) : succession of
events of the specification S

Out(S, σ) : set of possible
outputs (sent messages)
after the succession of
events σ

IUT I S

σ σ

Out(I,σ) Out(S,σ)

Model for the
formalization

2

7

Interoperability testing :
first definitions

n Definition of interoperability criteria based
on ioconf. Examples:

“Global total Interoperability Criterion”
R9 (I1,I2)= ∀σ∈Traces(S1||AS2) ⇒Out (I1||AI2, σ) ⊆
Out (S1||AS2,σ)

R9 equivalent to I1||AI2 ioconf S1||AS2
“Unilateral total Interoperability Criterion”
R7 (I1,I2)= ∀σ1∈Traces(S1),∀σ∈Traces(I1||AI2)
σ/ΣI1 = σ1 ⇒ Out ((I1||AI2)/ΣI1, σ) ⊆ Out (S1,σ1).

R7 equivalent to I1 ioconf S1 during the interaction of
I1 with I2

n Different criteria considering the different
testing architectures.

Interoperability
formal definitions

8

Interoperability testing
definitions: different problems

n Cases of non-interoperability not detected
n Incorrect verdicts during tests based on

these relations due to the absence of
quiescence management.

⇒ Quiescence: deadlock, outputlock or livelock
Quiescence can be allowed in the specification(s)
Represented with δ
Considered as an observable output event

Interoperability
formal definitions

9

Specifications with
quiescence modeled

l!aU!B U!C

l?b l?c

Specifications Δ(S1) and Δ(S2)
0

4

1

2

3

U?A 0

1

l?al!b

l!c

δ

δ
δ

Interoperability
formal definitions

10

Conformance testing

n Conformance relation ioconf
I ioconf S =∀σ∈Traces(S) ⇒

Out(I,σ)⊆ Out(S,σ)

n Conformance relation ioco
(with quiescence
management)

I ioco S =∀σ∈Traces(Δ(S)) ⇒
Out(Δ(I),σ)⊆ Out(Δ(S),σ)

IUT I S

σ σ

Out(I,σ) Out(S,σ)

Interoperability
formal definitions

11

Interoperability criteria

Global interoperability criterion:
iopG(I1, I2)= ∀σ ∈ Traces(S1||AS2) ⇒ Out(I1||AI2,σ) ⊆

Out (S1||AS2, σ)
Bilateral interoperability criterion: iopB(I1, I2)=

∀σ1 ∈ Traces(Δ(S1)), σ∈Traces(I1||AI2), σ/ΣI1 = σ1 ⇒
Out ((I1||AI2)/ΣI1, σ) ⊆ Out (Δ(S1),σ1) and

∀σ2∈Traces(Δ(S2)), σ∈Traces(I1||AI2), σ/ΣI1 = σ1 ⇒
Out ((I1||A I2)/ΣI1, σ) ⊆ Out (Δ(S1),σ1).

Interoperability
formal definitions

12

Quiescence Management on
Interoperability : some results

n Non-interoperability due to a non-
allowed output still detected

n More non-interoperability cases
detected :

One due to non-allowed quiescence in
one of the IUT
One due to incompatibility between
output of one IUT and input of the other

Interoperability
formal definitions

3

13

Interoperability test generation
based on iopG (classical method)

Test execution

Interoperability test generation
algorithm

S1||AS2 TP

TC

SUT(I1||AI2)

Verdict V

Interoperability
test generation

14

Interoperability test
generation based on iopB

Test purpose derivation

Conformance test
generation algorithm

Conformance test
generation algorithm

Test executionTest execution

(S1, S2) TP
S1

TPS1

S2
TPS2

SUT(I1||AI2)TC1 TC2

Verdict V1 Verdict V2
Verdict V’ = V

Interoperability
test generation

15

Input-output causal
dependency based method

n Previous methods only verify that outputs (and
quiescence) are foreseen in the specifications

n Problem: tester cannot verify if corresponding
inputs are really executed (by the other IUT)

n Solution : use of causal dependencies between
an input and the possible output to conclude

n Contributions of the method compared with the
iop-criteria-based method:

Interoperability test purpose expressiveness
Pass and Inc verdict refinement
Interoperability notion more taken into account

Interoperability
test generation

16

Conclusion on one-to-one
interoperability context

n Formal definitions (including quiescence
management)

n Interoperability test generation algorithms:
Based on the formal definitions
Input-output causal dependency based

Future work:
Implementation of these algorithms and test
on real protocols
Generalization to N>2 implementations

Conclusion and
perspectives

17

Interoperability with N>2
IUT

N>2 specifications (we can have Si=Sj
∀ (i,j) with i≠j)
Interconnexion topologies:

Depends on the number of IUT
Some topologies are equivalent

Test architecture: depends on the
topology

Conclusion and
perspectives

