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Introduction
n Interoperability test: verification of

the communication between the IUTs
and of the provided services

n Some existing attempts to formalize 
interoperability but no precise 
characterization.

n Interoperability test generation : no 
method based on formal definitions

n Work presented here: one-to-one 
context

n Future work: N>2
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Plan
n Introduction
n Interoperability testing architecture(s)
n Model for the formalization
n Interoperability definitions in the one-

to-one context
n Interoperability test generation in the 

one-to-one context
n Conclusion and perspectives
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General interoperability
testing architecture
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Model of IOLTS and 
notations

l!aU!B U!C

l?b l?c

System S1

Specifications S1 and S2
0

4

1

2

3

Upper 
Interface U

Lower 
Interface l

U?A
A B

C0

1

l?al!b

l!c

Model for the 
formalization

b  c
a

6

Some words about 
conformance testing

Conformance relation ioconf:
I ioconf S =∀σ∈Traces(S) ⇒

Out(I,σ)⊆ Out(S,σ)

Traces(S) : succession of 
events of the specification S

Out(S, σ) : set of possible 
outputs (sent messages) 
after the succession of 
events σ

IUT I S
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Out(I,σ) Out(S,σ)

Model for the 
formalization
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Interoperability testing : 
first definitions

n Definition of interoperability criteria based 
on ioconf. Examples: 

“Global total Interoperability Criterion”
R9 (I1,I2)= ∀σ∈Traces(S1||AS2) ⇒Out (I1||AI2, σ) ⊆
Out (S1||AS2,σ)

R9  equivalent to I1||AI2 ioconf S1||AS2
“Unilateral total Interoperability Criterion”
R7 (I1,I2)= ∀σ1∈Traces(S1),∀σ∈Traces(I1||AI2) 
σ/ΣI1 = σ1 ⇒ Out ((I1||AI2)/ΣI1, σ) ⊆ Out (S1,σ1).

R7 equivalent to I1 ioconf S1 during the interaction of 
I1 with I2

n Different criteria considering the different 
testing architectures.

Interoperability 
formal definitions
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Interoperability testing
definitions: different problems

n Cases of non-interoperability not detected 
n Incorrect verdicts during tests based on 

these relations due to the absence of 
quiescence management.

⇒ Quiescence: deadlock, outputlock or livelock
Quiescence can be allowed in the specification(s)
Represented with δ
Considered as an observable output event

Interoperability 
formal definitions
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Specifications with 
quiescence modeled
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Interoperability 
formal definitions
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Conformance testing 

n Conformance relation ioconf
I ioconf S =∀σ∈Traces(S) ⇒

Out(I,σ)⊆ Out(S,σ)

n Conformance relation ioco 
(with quiescence 
management)

I ioco S =∀σ∈Traces(Δ(S)) ⇒
Out(Δ(I),σ)⊆ Out(Δ(S),σ)

IUT I S

σ σ

Out(I,σ) Out(S,σ)

Interoperability 
formal definitions
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Interoperability criteria

Global interoperability criterion:
iopG(I1, I2)= ∀σ ∈ Traces(S1||AS2) ⇒ Out(I1||AI2,σ) ⊆

Out (S1||AS2, σ)
Bilateral interoperability criterion: iopB(I1, I2)=

∀σ1 ∈ Traces(Δ(S1)), σ∈Traces(I1||AI2), σ/ΣI1 = σ1 ⇒
Out ((I1||AI2)/ΣI1, σ) ⊆ Out (Δ(S1),σ1) and

∀σ2∈Traces(Δ(S2)), σ∈Traces(I1||AI2), σ/ΣI1 = σ1 ⇒
Out ((I1||A I2)/ΣI1, σ) ⊆ Out (Δ(S1),σ1).

Interoperability 
formal definitions
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Quiescence Management on 
Interoperability : some results

n Non-interoperability due to a non-
allowed output still detected

n More non-interoperability cases 
detected :

One due to non-allowed quiescence in 
one of the IUT 
One due to incompatibility between 
output of one IUT and input of the other

Interoperability 
formal definitions
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Interoperability test generation 
based on iopG (classical method)

Test execution

Interoperability test generation 
algorithm
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Interoperability 
test generation
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Interoperability test 
generation based on iopB

Test purpose derivation

Conformance test 
generation algorithm

Conformance test 
generation algorithm
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Interoperability 
test generation
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Input-output causal 
dependency based method

n Previous methods only verify that outputs (and 
quiescence) are foreseen in the specifications

n Problem: tester cannot verify if corresponding 
inputs are really executed (by the other IUT)

n Solution : use of causal dependencies between 
an input and the possible output to conclude

n Contributions of the method compared with the 
iop-criteria-based method:

Interoperability test purpose expressiveness
Pass and Inc verdict refinement
Interoperability notion more taken into account

Interoperability 
test generation
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Conclusion on one-to-one 
interoperability context

n Formal definitions (including quiescence 
management)

n Interoperability test generation algorithms:
Based on the formal definitions
Input-output causal dependency based 

Future work: 
Implementation of these algorithms and test 
on real protocols
Generalization to N>2 implementations

Conclusion and 
perspectives
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Interoperability with N>2 
IUT

N>2 specifications (we can have Si=Sj 
∀ (i,j) with i≠j)
Interconnexion topologies:

Depends on the number of IUT
Some topologies are equivalent

Test architecture: depends on the 
topology

Conclusion and 
perspectives


