
Formalizing interoperability testing :

Quiescence management and test generation

Alexandra Desmoulin and César Viho

IRISA/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
{adesmoul,viho}@irisa.fr, http://www.irisa.fr/armor

Abstract. This paper gives formal definitions of the different existing
interoperability notions called interoperability criteria. The equivalence
between two of them leads to a method for interoperability test genera-
tion that avoids the state explosion problem of classical approaches.

1 Introduction

Despite a large literature on the interest of providing a formal approach for
interoperability testing [1, 2], only few tentative have been proposed. Therefore,
the aims of this study presented in this paper are double. First, we give formal
definitions of interoperability testing called interoperability criteria (iop criteria
for short in the following). The second contribution of this work is a new method
to generate automatically interoperability test cases. It uses a theorem proving
the equivalence between two iop criteria. It avoids the well-known state-explosion
problem due to the classical construction of the specification composition. Thus,
the proposed method is a real solution that provides an easy and efficient way
to derive effectively interoperability test cases.

2 Interoperability definitions

One-to-one interoperability testing architecture In this study, we con-
sider the one-to-one interoperability context : the System Under Test (SUT) is
composed of two Implementation Under Test (IUT). There are two kind of in-
terfaces. The lower interfaces used for the interaction of the IUTs and the upper
interfaces used for the communication with their environment. Depending on the
access to the different interfaces, different architectures can be distinguished.
Formal background The well-known IOLTS (Input-Output Labeled Transi-
tion System) model will be used to model specifications and to define interop-
erability criteria. We note p?m (p!a) for an input (output) of message m on the
interface p. Figure 1 gives an example of two specifications using this model.
Quiescence and ioco Three main situations lead to quiescence of a system :
deadlock (a state after which no event is possible), outputlock (a state after which
only transitions labeled with input exist) and livelock (a loop of internal events).
Quiescence is modeled by δ and is treated as an observable output event. The
obtained IOLTS is called suspensive IOLTS [3] and noted ∆(M). The ioco con-
formance relation [3] is used for the formal interoperability definitions. It says
that an IUT I is ioco-conformant to its specification S if I can never produce



6

4 5

3

4

5 6

2

0

l?a

2

3

l!dl!c

l?b

0

1

U?A

δ

δ

δ

S S1 2

U!R

l?r
l?n

U!N
l!bl!a δ

l?d

l!r l!n

U!R

U!N

l?c

δ

Fig. 1. Specifications S1 and S2

an output that could not be produced by S after the same suspension trace.
Interaction We need a model of the asynchronous interaction of the imple-
mentations. This is noted M1‖AM2 and obtained as usual by a synchronous
composition of ∆(M1), ∆(M2) and FIFO queues modeling the asynchronous
environment. Quiescence is preserved and δ(i) corresponds to quiescence of Mi

and δ of the two IOLTS.
Projection In interoperability testing, we usually need to observe some specific
events of an IUT. M/X represents the projection of the behavior of the imple-
mentation M reduced to a set X of expected messages.
Model of an implementation : iop-input completion In the context of in-
teroperability testing, tester can only observe the events on the lower interfaces.
But these testers can not differenciate events received by an IUT from events
effectively treated. A completion is needed for inputs corresponding to the out-
put alphabet of the other IUT specification. It is called the iop-input completion
leading the IOLTS into an error deadlock state.
Formal definition of interoperability criteria According to the chosen test-
ing architecture, different notions of interoperability can be used [4]. We will
focus here on two interoperability (iop) criteria. The global iop criterion iopG

says that two implementations are considered interoperable if, after a suspen-
sive trace of the asynchronous interaction of the specifications, all outputs and
quiescence observed during the asynchronous interaction of the implementations
are foreseen in the specifications. The bilateral iop criterion iopB says that
after a suspensive trace of S1 observed during the asynchronous interaction of
the implementations, all outputs and quiescence observed in I1 are foreseen in
S1, and the same in the point of view of I2 implementing the specification S2.

The most important result is the following theorem 1 stating that iopG is
equivalent to the bilateral total iop criterion iopB .

Theorem 1. I1 iopG I2 ⇔ I1 iopB I2

3 Interoperability test generation

The goal of an interoperability test generation algorithm is to generate interop-
erability Test Cases (TC) that can be executable on the SUT composed of the
two IUT to be tested. The inputs of such algorithms are the specifications S1



and S2 on which the two IUT (I1 and I2) are based, and a Test Purpose (TP )
which is a particular property (in the shape of incomplete sequences of actions
that have to be observed or sent to the SUT) to be tested.
Interoperability verdicts The execution of an iop test case TC on SUT (I1‖AI2)
gives a verdict : verdict(TC, SUT ) ∈ {PASS, FAIL, INC}. The interoperabil-
ity verdict PASS means that no interoperability error was detected, FAIL means
that the iop criterion is not verified, and INC (for Inconclusive) means that the
behavior of the SUT seems valid but it is not the purpose of the test case.
The classical approach and the state-space explosion problem In the
classical approach based on a criteria like iopG, the test generation algorithm
begins with the construction of the asynchronous interaction S1 ‖A S2. Then S1

‖A S2 is composed with the TP. The consistency of TP is checked in parallel and
TC is generated. Yet, the construction of S1 ‖A S2 can cause the well-known
state-space explosion, as building S1 ‖A S2 is exponential in the number of states
of S1 and S2 and the FIFO queues size. Thus, interoperability test generation
based on the global iop criterion may be impossible even for small specifications.
A new method based on the bilateral iop criterion iopB : The equiva-
lence of iopB and iopG (cf. therorem 1) suggests to study a method for iop test
cases generation based on the bilateral iop criterion iopB. The idea is to derive
TPSi

from an iop test purpose TP . Each TPSi
represents TP in the point of

view of Si. This step is described in the following algorithm (see figure 2). The
second step is to use a conformance test generation tool F such that F : (S1,
TPS1

) → TC1 and F : (S2, TPS2
) → TC2. We obtain two unilateral iop test

cases TC1 and TC2. The obtained test cases obtained are modified in order to
take into account the differences between upper and lower interfaces in interop-
erability testing. For example, an event l!m (resp. l?m) in the obtained test case
will be replaced by ?(l?m) (resp. ?(l!m)) in the interoperability test case. This
means that the unilateral interoperability tester observes that a message m is
received from (resp. sent to) the other IUT on the lower interface l. No changes
are made on the test cases for events on the upper interfaces. According to the
theorem 1, verdict(TC, I1 ‖A I2) = verdict(TC1, I1 ‖A I2) ∧ verdict(TC2, I1

‖A I2). The rules for the combination of these two verdicts to obtain the final
iopB verdict are given by : PASS ∧ PASS = PASS, PASS ∧ INC = INC,
INC ∧ INC = INC, and FAIL ∧ (FAIL ∨ INC ∨ PASS) = FAIL.

Applying the method to an example Let us consider the two specifications
S1 and S2 of figure 1 and the interoperability testing purpose TP = l1?a.U2!N .
This test purpose is interesting because it contains events on both interfaces
and both IUTs. Applying the algorithm of figure 2, we obtain : TPS1

=l1!a.l1?n
and TPS2

= µ̄1.µ2 = l2!a.U2!N . The obtained test cases TC1 and TC2 are
given in upper side of figure 3. For interoperability test case generation based on
the global relation, the obtained TC (cf. the third test case in figure 3) comes
from the composition of S1‖AS2 with TP . According to the theorem 1, final
interoperability verdicts obtained with TC1 and TC2 should be the same as the
verdict obtained with TC. The proof is not given here but a look at glance to
TC1 and TC2 shows the same paths and verdicts in TC.



Input: TP : test purpose; Output: {TPSi
}i=1,2;

Invariant: Sk = S3−i (* Sk is the other specification *); TP = µ1...µn

Initialization: µ0 = ε; TPSi
= ε;

for (i=0;i ≤ n;i++) do

if (µi ∈ ΣSi) then TPSi
= TPSi

.µi (* just add *)
if (µi ∈ ΣSk

L ) then TPSi
= TPSi

.µ̄i (* just add the mirror *)

if (µi ∈ Σ
Sk

U ∪ {τ})
σ1 := TPSi

; aj =last event(σ1)
while aj ∈ ΣSk

U ∪ {τ} do σ1=remove last event(σ1)
aj−1 =last event(σ1) (* aj−1 is the last event added to TPSi

and
end a mirror event āj−1 may exist in Sk *)

MSk
= {q ∈ QSk such that q

āj−1

→ and σ = āj−1.ω.µi ∈ Traces(q)}

if (∀q ∈ MSk
, q

σ

6−→) then error(TP not valid : no path to µi)

while (e=last event(ω) /∈ ΣSk
L ∪ {ε}) do ω=remove last event(ω) end

if (e ∈ ΣSk
L ) then TPSi

= TPSi
.ē

else error(TP not valid : µi /∈ ΣS1 ∪ ΣS2)

Fig. 2. Algorithm to derive TPSi
from TP

INC INC

0 1 2 (PASS) PASS

TC1
?(l1?b)

?(l1?a) ?(l1!c) ?(l1?n) U1?N

?(l1?r)

PASS

TC2

0 1 3
U2!A ?(l1!a) ?(l1?c) ?(l1!n) U2?N

2 4

U2!A ?(l1!a) ?(l1?a) ?(l1!c) ?(l1?c) ?(l1!n) ?(l1?n) U1?N U2?N
0 1 2 3 4 7 PASS

(PASS)

U2?N
?(l1?n) U1?N

PASS

65

8
,

Fig. 3. Interoperability test cases obtained for TP = l1?a.U2!N

4 Conclusion
In this paper, interoperability criteria taking quiescence into account are defined,
describing the conditions under which two IUT can be considered interoperable.
A theorem proving that two of them are equivalent allows a new method for
interoperability test generation that avoids the classical state-explosion problem.
Further studies will consider a distributed approach for interoperability testing
of architectures composed of more than two implementations.

References

[1] O. Rafiq and R. Castanet. From conformance testing to interoperability testing.
In Protocol Test Systems, volume III, pages 371–385, North-Holland, 1991. IFIP,
Elsevier sciences publishers B. V.

[2] S. Seol, M. Kim, S. Kang, and J. Ryu. Fully automated interoperability test suite
derivation for communication protocols. Comp. Networks, 43(6):735–759, 2003.

[3] J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten
and S. Mauw, editors, CONCUR’99 – 10th Int. Conference on Concurrency Theory,
volume 1664 of LNCS, pages 46–65. Springer-Verlag, 1999.

[4] S. Barbin, L. Tanguy, and C. Viho. Towards a formal framework for interoperability
testing. In M. Kim, B. Chin, S. Kang, and D. Lee, editors, FORTE’ 2001, pages
53–68, Cheju Island, Korea, 2001.


