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To achieve high-performance on processors featuring ILP, most compilers apply
locally a set of heuristics. This leads to a potentially high-performance on
separate code fragments. Unfortunately, most optimizations also increase code
size, which may lead to a global net performance loss. In this paper, we propose
a Global Constraints-Driven Strategy (GCDS) for guiding code optimization.
When using GCDS, the final code optimization decision is taken according to
global criteria rather than local criteria. For instance, such criteria might be
performance, code size, instruction cache behavior, etc. The performance�code
size trade-off is a particularly important problem for embedded systems. We
show how GCDS can be used to master code size while optimizing performance.

KEY WORDS: Compiler; optimization; instruction level parallelism; code
size.

1. INTRODUCTION

For the last ten years, processors are featuring more and more instruction-
level parallelism (ILP) and deeper pipelines. In order to exploit this ILP
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and therefore to enable high-performance, numerous code optimizations
have been proposed;(1�11) for instance function inlining, loop unrolling,
software pipelining, etc. These transformations have been implemented in
academic compiler suites such as SUIF(12) or IMPACT(13) as well as in
commercial compilers.

Conventional compilers are not designed to deal with global issues
such as code size and execution time. They rely on a in-built strategy that
applies locally a set of heuristics on code fragments to optimize the execu-
tion time. However, most optimizations used to improve performance also
increase code size, (1) therefore increase the overall instruction cache foot-
print of the program. Then, some code generation decision which seemed
to locally increase performance may result in a global net performance loss
due to an increase of instruction cache misses. In the context of embedded
application the increase in instruction memory impact directly on the cost
of the system. Final code production decision should be taken globally
rather than locally! This has lead us to propose the new general compiler
strategy presented in this paper: Global Constraints-Driven Strategy
(GCDS).

As in traditional optimizing compilers, several optimization sequences
for each code fragment are explored and parameters such as execution time
and code size are estimated for each alternative. However GCDS differs
from traditional compiler heuristics in the following direction: the choice of
the precise optimization sequence for each code fragment is not decided
locally after the evaluations of these alternatives, but globally according to
performance or code size criteria on the overall application.

In this paper, we show how applying GCDS allows to master the
code size�performance trade-off on embedded applications. GCDS will be
illustrated on low-level optimizations such as scheduling, (7) unrolling, (1)

superblock, (6) and software pipelining(7, 14) applied to loops. However,
GCDS may also be applied to other code fragments as well as at other
compiler stages (e.g., function inlining at a high-level).

The remainder of the paper is organized as follows. Section 2 briefly
presents the problem of code size�performance trade-off for embedded
systems. Section 3 introduces the GCDS strategy. GCDS is illustrated on
the performance�code size tradeoff for compute-intensive loops since this
is a major issue for DSPs and application-specific processors. Section 4
overviews our experimental framework for implementing assembly-level
optimization sequences, the target architecture and the benchmarks.
Section 5 presents the application of the GCDS strategy to critical loops
of the benchmarks and analyzes the results. Finally, Section 6 overviews
related works and Section 7 concludes with some directions for further
investigations.
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2. CODE SIZE�PERFORMANCE TRADE-OFF ON
EMBEDDED APPLICATIONS

In embedded applications, both performance and code size have tradi-
tionally been critical, leading to the use of hand-optimized codes (at least
for critical kernels).

Therefore, a compiler for an embedded system must be able to achieve
high performance while keeping code size under control. Ideally, one wants
it to compete favorably with human experts on small critical kernels, but
also to globally control the overall size of the code. To achieve the first
goal, the compiler must be able to explore locally many different strategies
for scheduling, register allocation, superblock optimization, loop unrolling,
etc. To reach the second goal, the compiler must balance code size with
execution time in a global way on the whole application. The impact of
each code fragment has to be evaluated on both the overall performance
and the overall code size. In other words, for embedded applications, the
compiler must be able to answer either of the following global questions:
``Given a maximum code size, what is the highest performance that can be
achieved?,'' or ``Given a performance goal, what is the smallest code size
that can be achieved?''

The more aggressive compilers are, the more code size is an issue to
address. To guide the code optimization decision, for many embedded
applications, profiling results can be gathered. It should be noted that hand
written critical kernels also rely on such accurate profiling. These results
may be used for weighting the impact of different code fragments on the
optimization decision.

3. GCDS

Traditional compilers do not take into account global constraints on
applications such as code size, real time execution, etc. They have a single
in-built strategy based on locally applying a set of heuristics to hopefully
minimize the execution time. In most compilers, a single optimization
heuristic will be tried on each code fragment. In the best case, a set of
heuristics is tried but the choice of the selected code is done locally and is
generally determined only through a rough performance evaluation (e.g.,
based on register constraints). Such compilers do not control any global
parameter such as the overall code size.

A contrario, the philosophy of our Global Constraints-Driven Strategy
(GCDS) is to use global information on the complete application to select
the precise transformation that will be applied locally on each code fragment.
GCDS is illustrated on Fig. 1.
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Fig. 1. GCDS overall organization.

1. For each code fragment, several code optimization alternatives
leading to different implementations are analyzed. The resulting
code sizes and execution times are computed�estimated.

2. A global selector function (the ``select'' function in Fig. 1) is used
to choose a code optimization among alternatives for each code
fragment. The choice depends on an estimate of the criteria such as
the total execution time, code size, or any other global constraint.

3.1. Applying GCDS for Code Size�Performance Trade-Off

As already mentioned, we illustrate the GCDS principle on the perfor-
mance�code size trade-off. The code optimizations that will be considered
are low-level loop transformations along with function inlining. We first
describe the cost model we used for loops. Then we propose a select func-
tion that can be used to trade off code size against performance.

A set of transformations is applied to each code fragment. The dif-
ferent results are evaluated: for each piece of code the size and the number
of static cycles per loop iteration are measured. Finally, these data are used
to decide which transformation must be applied to each code fragment to
obtain the best possible global performance.

3.1.1. A Cost Model for Loops

For any particular instance of the code generated for a loop L, its cost
and execution time is modeled as follows: a number of execution cycles per
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iteration of the loop, denoted a, and an overhead cost, denoted b, corre-
sponding to the loop epilogue and prologue. The value b may vary as a
function of the number of iterations (i.e., the iteration space) of the loop.
Each loop is also weighted with W the number of times it is executed.
Some transformations (e.g., software pipelining) require that a minimal
number of iterations minit are executed. Let n be the number of iterations
of the loop. Hence using this simple model, the execution time t in machine
cycles spent executing loop L, is given by:

if n>minit : t=W_(a_n+b(n)) (3.1)

This model considers loops without conditional branch instructions. This
may not be completely accurate for loops with complex body. However it
is sufficient in most cases, especially when if-statements are converted to
straight line code using guarded instructions by if-conversion. The cost
model can be easily extended. The current version expects the size and the
speed to be linear expressions. Note that this is not a limitation of our
approach, but rather a choice we made regarding the select function.

A difficulty arises when the values of W and n vary from one run to
another. Variations of W do not matter as long as they keep the same
relative values which is usually the case (i.e., the most time-consuming part
of a code tends to remain the same). In this case it is possible to optimize
for an average run by considering each value of n. Let nbn be the number
of possible values for n. For a loop L instead of (3.1) we can use:

:
nbn

k=1

W (k)_(a_n(k)+b(n(k)))

For the sake of clarity we shall assume that there is only one possible value
of n per loop in the next section.

Computing a and b. The values of a and b directly depend on the
particular optimization applied to a loop. In the case of local scheduling of
the loop body, a is simply the number of cycles the loop body lasts after
scheduling, b is zero cycle and the size s=a. It might be more complex
when loop unrolling is involved: unrolling in our experiment is followed by
superblock construction(6) and addition of guards to allow instructions to
move across jumps. In this case b depends on the value of n as well as the
unrolling factor u. Indeed, the entire loop body is executed in this case, so
the overhead cost b(n) is given by:

b(n)={if (n modulo u=0) then 0
else (u&(n modulo u))_a
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Therefore if x code optimization alternatives are explored, we get x
possible pairs of cost and execution time for the loop. This approach
expresses the time spent in the loops as a system of linear equations. Our
selection function has to implement the choice of the best optimization
combinaiton according to this system.

3.1.2. The Select Function as a Simplex Problem

In this section we present how the global selection of code optimiza-
tion alternatives can be represented as the resolution of a Simplex problem.

Let Li be a loop. Let opt j
i , j # [1, nbopt] be the optimization sequen-

ces applied to loop Li . Let s j
i be the size of Li 's code for optimization j, it

is measured on actual code and expressed as a number of VLIW instruc-
tions. Let t j

i (n)=a j
i _n+b j

i (n) be the number of cycles for n iterations of
loop Li . We denote $ik the integer variables used to encode the optimiza-
tion alternatives in the equations. If $ik=1, then for loop Li , the optimiza-
tion sequence k is the one to choose. Otherwise $ik=0. For each loop we
get the following integer equations:

Ti (n)= :
nbopt

k=1

t k
i (n)_$ik

Si = :
nbopt

k=1

sk
i _$ik

1= :
nbopt

k=1

$ ik

where Ti (n) is the execution time in cycle for n iterations, Si is the code
size.

Let ni be the number of iterations in loop Li and Wi be the number
of times the loop is executed. Assuming there are nbl loops in the code, we
get the following linear expressions:

nbCycle= :
nbl

l=1

Wl_Tl (nl ) totalSize= :
nbl

l=1

S l

Choosing the optimization sequences for each loop can then be obtained
by minimizing nbCycle with the constraint totalSize�Smax , Smax being the
maximum code size allowed for the set of loops, or by minimizing totalSize
with the constraint nbCycle�Cmax , Cmax being the maximum number of
cycles allowed for the loops.
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3.2. Weighting Code Fragments

In the previous example we have implicitly assumed that the weights
of the different code fragments are given by their respective number of
occurrences and the number of loop iterations. Such numbers may be
collected by profiling. This approach is clearly acceptable for embedded
systems because the user (i.e., the integrator) should have a very good
knowledge of its workload.

Profiling cannot be easily used during code development for general
purpose applications. However, for production codes, optimizations based
on extensive profiling is quite acceptable. For instance such an approach is
used by the FX!32 system which optimizes the code based on the usage of
each particular user.(15)

4. EXPERIMENTAL FRAMEWORK

It is our belief that, during the process of optimizing an application, the
repetitive task of applying code transformations to code fragments cannot
be done without a software infrastructure. This section first overviews the
target architecture we used, then details the environment we developed to
experiment our new strategy. Next, we present the benchmarks we used.

4.1. Target Architecture: The Philips TriMedia

The Philips TriMedia TM-1000(16) is a processor used in high-perfor-
mance multimedia applications, from video phones to multi-purpose
programmable plug-in cards for personal computers. The TM-1000 consists
of a general purpose CPU core (DSPCPU) and a range of media-specific
units: video and audio interfaces and coprocessors, memory interface, PCI
bus interface, etc. The different units are interconnected through a high-
bandwidth internal bus.

The 32-bit DSPCPU features 27 functional units, and 128 general-
purpose registers. It implements split instruction and data caches (32 and
16 Kbytes, respectively). The TM-1000 implements a VLIW(17) architecture.
Up to five operations are issued on each clock cycle, at a clock rate of
100+ MHz. Every operation is guarded by a register.

Operation latencies are of one, two, three, and seventeen cycles. Most
operations are pipelined and can be issued every cycle. However, the choice
of a VLIW instruction set architecture requires the issue of instructions to
be controlled in software, and introduces program structure constraints at
assembly level: delayed branches and mapping restrictions between instruc-
tion issue units (slots) and functional units. There are three cycles between
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the issue of a branch or jump instruction and the effective change in con-
trol flow. In addition, certain operations can only be issued in specific slots
(i.e., at certain locations in the instruction word), introducing slot allocation
conflicts.

4.2. Implementation Infrastructure

Figure 2 illustrates the global organization of a compilation chain for
embedded applications. Our group only focuses on the back-end part in
this chain.

The low-level implementation infrastructure we have built makes use
of SALTO.(18) GCDS is built on top of it and is used to evaluate different
code transformations on code fragments from the global compiler strategy.
As we are working at assembly level, additional information is transmitted
to the optimizer by upstream compiler stages via an interface language
called IL.(19) [Note: As the front end is still under construction in the
experiments described in this paper, the IL files were hand generated.] This
file contains information that is lost during the compilation phase, such as

Fig. 2. Compilation Process.
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dependences between memory accesses, loop iteration space and stride
when available.

SALTO is a retargetable framework for developing a whole spectrum
of tools that manipulate programs expressed in assembly language. The
objective of such a system is to provide the user with a single environment
that permits him�her to implement algorithms needed for performance
tuning of low-level codes. This set of tools includes assembly code schedulers
(e.g., software pipelines), profiling, and tracing tools. SALTO is easier to
retarget than a compiler, but it does not operate on executable codes. Most
of the information needed for building the control flow graph, performing
register allocation, etc. is still available at the assembly code level.

An application built with SALTO consists of three parts, as shown in
Fig. 3: a kernel (SALTO), a machine description file and an optimization
or instrumentation algorithm.

v The kernel performs common house-keeping tasks the user does not
want to worry about: the parsing of the assembly code and the
machine description file, and the construction of an internal
representation.

v The machine description file provides a model of hardware configu-
ration and the complete description of the instruction set, including
per-instruction resources reservation tables.

v The optimization or instrumentation algorithm is supplied by the
user. Once the system has read the machine description file and the
assembly code, and the internal representation is built, the control is
passed to a user-supplied function.

Fig. 3. Salto.
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An object-oriented user interface provides an easy access to the internal
representation of assembly code. The classes allow the user to manipulate
each function in the form of a control-flow graph and to access to resource
usage of each instruction. For further information on SALTO the reader
can refer to Rohou et al.(18)

The usage of the specific infrastructure we built for implementing
GCDS conforms with Fig. 1. A set of transformations is applied on a
cloned piece of code. Then according to performance or size criteria, one
of the transformations is selected for each considered loop. We used the
lp�solve(20) package to solve the Simplex problem.

4.3. Optimizations Suite

In this paper we only consider optimizations on loops. The original
assembly files were generated using the Philips compiler. The suite of
optimizations we implemented includes loop unrolling, construction of
superblocks, (6) scheduling of basic blocks and superblocks, (6, 21, 22) software
pipelining and inlining.(4) Insertion of guards to instructions removes
jumps and thus allows scheduling across jumps.(23) Software pipeline
generates a modulo scheduling of the loop body. The algorithm used to
compute a modulo scheduling is based on the method proposed by Wang
et al.(14) Register allocation can be performed either before or after scheduling
of the instructions. For the experiments, no variable spilling is performed
when not enough registers are available.

For the purpose of this study, five optimization sequences have been
tested on each loop. These transformations are summarized in Fig. 4.

v S0 is the simplest transformation sequence. First, registers are
renamed to remove as many anti-dependences as possible to
improve code compaction. The code is then scheduled locally;
register allocation is performed as the last step.

Fig. 4. Optimization sequences (n is the unroll factor).

334 Rohou, Bodin, Eisenbeis, and Seznec



v Un is based on unrolling the loop body n times. The unrolled body
is transformed into a superblock, and conditional jumps are
eliminated through the insertion of guards, resulting in a large basic
block. As in S0 , register allocation is performed after local scheduling.
Register renaming is not applied, since the introduction of guards
hides actual register writes to the renaming algorithm.

v U$n is similar to Un but register allocation is performed before
scheduling. This decreases the code compaction potential, but
usually requires less registers, allowing this sequence to succeed
when Un fails due to a lack of register.(24)

v SP consists in applying a software pipeline algorithm.(7) This
sequence is limited to loops whose body is a single basic block. In
measurements for SP, we will also report the unroll factor U.

v I causes the function calls to be inlined. The large resulting body is
scheduled before register allocation is performed. Inlining results in
a larger block with more potential parallelism. It can also enable
further transformations prevented by the function call, for instance
software pipelining.

Other optimization sequences might as well be tested. It should be
noted that the code is not generated after the application of each transfor-
mation to each code fragment. Instead we only measure the values relevant
for our global selection.

4.4. Benchmarks

Since the TM-1000 architecture targets multimedia applications such
as wireless phones or high resolution TV, we decided to experiment our
strategy on this class of applications. Both applications have the following
in common: they contain a number of small loops that are very frequently
executed but with a small number of iterations, typically 4 or 8.

We selected the following two benchmarks:

H263 is a new improved standard for low bit-rate video compression.
We used ``tmndecode'' which is a decoder and player for H263
bitstreams from Telenor R6D. Six different bitstreams were used to
collect the profiling information.(25)

mpeg2play is a decoder and viewer for MPEG2 encoded video files.
We used only the decoder part to avoid taking into account the X11
libraries. The measures were done with five different video sequences.

For both applications and for most loops, the same iteration space was
encountered, whatever workload is used.
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5. EXPERIMENTAL RESULTS

As the front-end is not fully integrated with the back-end we were not
able to get a complete propagation of memory dependences from the
source code. Thus the IL-files containing these information were generated
by hand. As such this effort would be unrealistic for a complete application;
we chose instead to focus on the most time-consuming loops in both
applications. The loops accounted on average for 400 of the running time.
They are presented in Fig. 5 with the values for n (the number of itera-
tions) and W (the number of execution of the loops) for a set of runs. It
should be noted that the loops have a small number of iterations. This
emphasizes the impact of the loop remainders.

Despite the limited number of code fragments tested in our experi-
ments, our approach could be applied to an arbitrarily large number of
loops. Current solvers can support large problems. [For instance, the
solver gives, generally, a result in a few minutes with systems up to 200
loops on an UltraSparc 200 MHz.] A survey of various linear programming
softwares is available.(26)

5.1. Applying Transformations

The original assembly files were generated using the Philips compiler.
Our system then tried to apply each transformation to each loop. In each
case we measured the values of a, b and s as defined in Section 3.1.1. These
measures are given in Figs. 6 and 7. A dash indicates that the transforma-
tion is not applicable and failed indicates a failure of the register allocator.

In order to further increase performance, we planned to unroll the
loops of mpeg2play after inlining (only loops 1 and 2 contain a function
call). Unfortunately the transformations U2 and SP failed because of insuf-
ficient number of registers.

When the software pipeline could be applied, it gives a result with
a low number of cycles per iteration. However the minimum number of
iterations required (minit ) is greater than the effective numbers gathered by
profiling. This means that in all our cases, the application would have
executed the remainder loop and would never have benefited from the
transformation.

5.2. Analysis

Figure 8 shows the performance achieved by the benchmarks as a
function of the code size constraint. This figure was obtained by computing
the number of static cycles for each code size constraint. As foreseeable the
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Fig. 5. Time consuming loops extracted from H-263 and mpeg2play: n is the number of
iterations and W is the number of loop executions.
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Fig. 6. Applying transformations to H263 loops. ai

denotes the number of cycles per iteration, bi the loop
overhead and si the code size.

performance increases with the code size. The merit of our strategy is to
provide the user (or the compiler) with a tool that takes decisions. While
on a small program involving very few loops a decision could be handled
manually by an expert, for large applications involving hundreds of code
fragments such decision has to be supported by an automatic tool.

Fig. 7. Applying transformations to mpeg2play loops. ai denotes the number of cycles
per iteration, bi the loop overhead and si the code size.
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Fig. 8. Code size vs. performance.
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Fig. 9. Evolution of the sizes of the loops for mpeg2play. The x axis is the maxi-
mum global code size allowed. The y axis is the code size for each loop.

We studied how optimizations of different loops interact with each
other. It appears that the sequence globally applied to loops when the size
changes is rather tricky. We illustrate this behavior for mpeg2play in Fig. 9:
each curve represents the size allocated to a loop as a function of the
constraint. When the allocated space shrinks, loop 5 is first unrolled 8
times, then 4, then only 2 times. But when the size still decreases, the loop
is unrolled 4 times again, to the detriment of loop 4 which drops away
from U8 to U4 . This can also be seen on Fig. 8 for loop 3 on the third
component of the tuples shown for mpeg2play. This is a consequence of
the global interaction of the different pieces of code with respect to the
optimization. Therefore the best transformation to apply to a loop cannot
be determined by only considering each loop independently. Instead, this
study shows that optimization is a complex problem that can only be
handled in a global fashion.

Let us try to better emphasize the efficiency of our approach compared
to local strategies that do not take advantage of a global view of the
program and thus take local decisions. Let us consider the following two
distinct compiler strategies:

1. The first approach locally chooses the best performance among the
transformations presented in the previous section according to
profiling information. This strategy is equivalent to GCDS with
unlimited code size. The results are represented in Fig. 8 by the
label number 1.
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2. The second one systematically selects the optimization that gives
the highest asymptotic performance, that is the smallest ai for each
loop. It is not guided by profiling but, of course, makes use of
static information when available (e.g., constant loops bounds). In
order to limit code size expansion, we assume that the compiler
does not choose a larger unroll factor if it does not increase perfor-
mance by more than 100. The points are plotted in Fig. 8 with
the label number 2.

Since the first approach does not take code size into account, it would
produce the fastest code by inlining every function and unrolling loops to
the maximum degree. Although this code allows to reach the highest
possible performance, it wastes much room compared to GCDS. For
instance, a loss of 10 in static cycles for mpeg2play permits to divide the
space allocated to the loops by a factor of 2 (from 400 to 200 words).
Similarly allowing a 30 increase in cycles for H263 gives a saving of 210

in space. This phenomenon would be far more pronounced in the presence
of tens or hundreds of loops.

The second approach does not rely on profiling information. This can
cause a substantial loss in space or performance. For instance, loop 5 of
mpeg2play will be software pipelined, since this optimization gives a much
better loop speed (a5=5). Unfortunately the value of minit will never be
reached at run-time and the application will always use the remainder loop.
This causes space to be wasted and a nonoptimal code to be executed
(a5=14 for the remainder loop, compared to 9 if the loop were unrolled
four times). Nevertheless a fast code is generated for mpeg2play, but the
same performance level could be achieved with a 260 smaller code. A con-
trario this strategy results in neither fast nor small code for H263.

GCDS, compared to both previous strategies, emphasizes the impor-
tance of a global decision and the need for reliable profiling information.
It should also be pointed out that, if the user is facing a hard code size
constraint (e.g., the size of the instruction EEPROM), no local strategy can
provide him�her a solution. Then he�she has to choose (maybe guided by
profiling) a trade-off on which code fragments to optimize.

5.3. Using Profiling Information

Our strategy heavily relies on profiles. Wall(27) studied the predict-
ability of a program behavior using profiles and presented somewhat
pessimistic results. However his results illustrated general purpose applica-
tions. Therefore we had to check whether the decisions taken are still valid
when different data sets are used for the applications.
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First, we checked that the most time-consuming loops do not depend
on the program input. However one must pay attention to this issue when
the number of code fragments to optimize gets bigger.

The second point consists in verifying that the generated code using
one profile set is still performant for other data sets. We proceeded as
follows: given different inputs, each of them was used to determine an
optimal sequence of optimizations and the number of cycles is measured.
At the same time, we measured the number of cycles achieved for this input
with the application optimized for the another set of inputs. This is
repeated for each value of the size constraint. We the checked the ratio
between these two values. We checked seven video with mpeg2play and six
bitstreams with H263. We found that generally both inputs result in the
same best found sequence and never exceeds 1.30 more cycles than the
best found sequence for mpeg2play and 60 for H263.

6. RELATED WORK

Two issues are addressed by GCDS: the application of a number of
transformations to various pieces of code and the global decision of best
transformation for a particular fragment.

Compilers and optimizers are faced to the well-known phase ordering
problem. Many code optimizations exist and the majority have an impact
on the efficiency of the others. Several attempts have been made to
integrate different phases in order to avoid interference. Bradlee et al.
combined register allocation and instruction scheduling in MARION.(2)

Goodman and Hsu(24) proposed an alternative with two techniques. Carr (28)

optimized loop nests by simultaneously considering ILP and data reuse.
Wolf et al.(29) presented a model that statically predicts the execution time
of a loop nest with respect to data cache and number of instructions. The
best optimization is found by traversing the possible cases. Berson et al.(30)

integrated code generation with other transformations such as redundancy
elimination and DAG restructuring when they are beneficial.

Fewer approaches consider the whole program. Fisher(31) studied
scheduling according to a global execution trace. Among work that focuses
on the global interaction of different optimizations applied to different code
fragments, Gupta(32) used the Program Dependence Graph to distribute
parallelism across code regions. Hank et al.(33) defined code regions to
enlarge the vision of the compiler and possibly enable some optimizations.

7. CONCLUSIONS

During compilation processes, many alternative codes may be chosen
by the compiler. In order to chose among these alternatives, most compilers
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apply local heuristics for the trade-off between code size and performance.
As global constraints on the whole application such as code size are not
considered, this may lead to code size explosion and�or poor overall
performance.

In this paper, we propose GCDS a new compiler strategy for address-
ing global issues on an entire application. The basic principle of GCDS for
code generation consists in separately evaluating a set of code optimization
heuristics on each code fragment and then to rely on a global select function
for final code production. The complexity of the first step in this process is
essentially linear with the source code size and the number of local code
generation heuristics while the second step is essentially a linear integer
problem resolution.

We have illustrated GCDS for low-level loop body code generation on
the tradeoff between code size and execution time.

Our belief is that other issues in code optimization should be
addressed globally on the whole application, and then that GCDS should
be applied. Here are two such issues. Code optimization for a complete
library could be addressed globally as follows: the different functions in the
library might be weighted, then their respective maximum code sizes might
be determined, and finally balancing code size with execution time could be
done at the function level. The instruction cache usage is another issue
related to code size that should be addressed globally at the application
levels: sets of code fragments that should be alive at the same time in the
cache might be determined, thus providing a set of constraints.

The application of GCDS is also conditioned by the ability of weighting
code fragments. For embedded applications one can rely on profiling. For
general purpose applications, optimization based on extensive profiling can
also be efficient as recently demonstrated by the FX!32 system.(15)
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