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Abstract. Complex embedded systems have always been heterogeneous,
and it is unlikely that this situation will change any time soon. Still, the
huge non-recurring engineering cost of silicon products tends to make
more parts of embedded systems programmable. Our research proposes
to address this complexity through processor virtualization. We decided
to rely on the CLI format, and we developed a GCC back-end for it.
Even though we were able to generate reasonable code, we noticed that
we were lacking some important optimizations that exploit the evalua-
tion stack of the virtual machine. Since GCC internals do not provide
any support for stack-based instruction set, we introduced our own.
We review the limitations of our previous prototype, and we present
the data structures of our internal representation, as well as its API. We
also describe a number of optimizations that this representation enabled.
To exemplify its convenience, we report the code size improvements we
obtained with little effort.

1 Introduction

Complex embedded systems must provide a wide range of dedicated and de-
manding functionalities, such as communication, multimedia and user interface.
Given their tight area and power constraints, no programmable homogeneous
architectures can provide those functions. Rather, they typically consist of a
host microcontroller running the system software, some heterogeneous proces-
sors, such as DSP or VLIW, and dedicated hardware.

Instruction set virtualization is a way to address this heterogeneity. The most
widespread technologies are Java [9] and the Common Language Infrastructure

(CLI). CLI is a rich virtualization environment for the execution of applications
written in multiple languages (CLI is better known as the core of Microsoft’s
.NET technology). It is both an ECMA [4] and ISO [7] standard. Among other
features, it includes an effective abstraction of instruction sets in the form of a
processor-independent stack-based bytecode format.

In previous work [1, 3], we have shown that CLI is an appropriate program
representation for deployment of embedded applications, in terms of both code
size and performance. Since most embedded applications are written in the C
language, and we were unable to find any adequate C compiler for CLI, we
originally developed a port of GCC. This work has been presented in [2].

While this compiler produced reasonable code, we noticed that we were un-
able to take advantage of the evaluation stack, simply because GCC internals
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cannot represent it. The contribution of this paper is to present the lightweight
stack-based intermediate representation (IR) that we added to GCC. We devel-
oped it to better manipulate CLI code, but it could be adjusted for any other
representation that makes use of an evaluation stack. Our developments are
publicly available in the usual GCC source code repository.

Section 2 explains in more details the limitations of our previous port of GCC
and the motivations for our extension. Sections 3 and 4 respectively describe our
new internal representation and the new optimization passes we wrote. We then
evaluate its effectiveness in Section 5. Finally, we conclude in Section 6.

2 Motivation

The standard GCC compilation flow is the following: the front-end parses the
input source code and turns it into an internal tree-based representation called
GENERIC [10, 12]. This code is then lowered into the GIMPLE representation
to be manipulated by the high-level optimizers. It is then turned back into
GENERIC code before being translated into RTL, the register transfer language
used by the back-end for low-level optimization.

RTL, unfortunately, is not a good starting point for emitting CLI bytecode:
it is not type-rich, and it assumes that the underlying machine is register-based.
The most important phases dealing with RTL are designed around this assump-
tion. Previous attempts to coerce RTL into CLI code [11] reported fundamental
problems caused by the mismatch between the abstraction levels.

The first version of our CLI back-end [2] was based on the existing GCC in-
frastructure, with the exception that we bypassed the RTL passes. We processed
the final GENERIC/GIMPLE code in order to emit CLI instructions one by one.
Complex nodes were expanded into a sequence of simpler operations, then a sin-
gle depth-first descent was made on the trees, directly printing CLI code into an
assembly file. This technique worked but still it had some drawbacks.

– The simplification pass tried to twist GENERIC so that we could emit as-
sembly directly from it. This was an awkward and fragile process because
it relied on implicit assumptions between the simplifier and the emitter re-
garding how GENERIC nodes were handled.

– The code quality depended heavily on the source trees. No context was
available when recursively expanding one node at a time. Shallow trees (like
those produced with optimizations off) produced CLI code that did not use
the stack at all, forcing us to create many temporaries and bloating the code.
Some GENERIC-to-GIMPLE simplifications also caused this behavior.

– We missed the optimizations done on the RTL representation and we could
not do CLI specific optimizations as our IR was not really CLI.

These problems prompted us to design a new simple and specific IR which
improved code generation and made it more robust and simpler to extend. We
refer to it simply as CLI instructions or CLI statements.



struct c i l s tm t d GTY ( ( ) ) {
/∗ Opcode of t h i s statement . ∗/
ENUM BITFIELD ( c i l o p cod e ) opcode : 8 ;
/∗ . . . ∗/

} ;
typedef struct c i l s tmt d ∗ c i l s tm t ;

Fig. 1. Representation of a CLI Statement

3 Description of the New Representation

For each funtion, the virtual machine executing the bytecode has a representation
of local variables and arguments, and an evaluation stack which is used for storing
partial results [4, 7]. Almost all CLI instructions directly operate on the stack,
popping their arguments from it and storing back their result. No operation can
be done directly on local variables and arguments.

On top of this, the CLI bytecode has rich type information. Pointers retain
the type of the object they point to, stack slots retain the type of the object
which was stored in them, aggregate types know their fields, etc.

3.1 Representation of CLI instructions

We loosely modeled the CLI instructions against GIMPLE tuples.3 There are
substantial differences, but most of the philosophy is retained. We kept an eye
on the gimple-tuples branch during its development, because it has become
the middle-end representation, and we wanted our design to be immediately
familiar to GCC developers. Note that we only used a subset of the instruction
repertoire defined by CLI [4, 7]: we focused on unmanaged code, specifically
on the C language, whereas many CLI instructions are designed for an object-
oriented managed environment (exceptions, garbage collection, . . . )

A basic CLI instruction is made of a single small structure holding the in-
struction type, an extra type-dependent union field, plus a few extra fields for
housekeeping (see Figure 1). The union field is either directly used by simple in-
structions or it points to another external structure holding more information for
complex ones. Instructions working on local variables or arguments use this field
for storing a tree representing the VAR_DECL or ARG_DECL involved; a load- or
store-field instruction uses this field to point to a FIELD_DECL. This is somewhat
similar to GIMPLE tuples statements. Complex CLI statements like function
calls or switches use this field for holding a payload of additional information.

Our CLI instructions and their operands use GCC garbage collection facilities
like other data structures in GCC front- and middle-end.

3 Note that the CLI bytecode is actually named CIL (Common Intermediate Lan-
guage). This is the reason why we use the cil prefix in our naming convention.
However, for the sake of simplicity we only use CLI in the text of this paper.



typedef struct { /∗ . . . ∗/ } c i l s t m t i t e r a t o r ;
static i n l i n e c i l s t m t i t e r a t o r c s i s t a r t ( c i l s e q ) ;
static i n l i n e c i l s t m t i t e r a t o r c s i s t a r t b b ( b a s i c b l o c k ) ;
static i n l i n e c i l s t m t i t e r a t o r c s i l a s t ( c i l s e q ) ;
static i n l i n e c i l s t m t i t e r a t o r c s i l a s t b b ( b a s i c b l o c k ) ;
static i n l i n e bool c s i e n d p ( c i l s tm t i t e r a t o r ) ;

Fig. 2. Iterators on CLI Statements

3.2 CLI container structures

CLI instructions are held into sequences of instructions. A sequence node is al-
located for each CLI instruction so that the sequence can be easily manipulated.
The functions provided for the CLI sequences have names and behavior very sim-
ilar to their GIMPLE siblings. Sequences are cheap to allocate and manipulate,
and they are cached to minimize allocation costs and memory footprint.

GCC provides hooks for additional representations. CLI sequences should be
attached to basic blocks like trees or RTL sequences. However, at this time, our
port is not integrated in the main development branch, and we did not want
to pollute GCC global structures with target-specific data. We used an external
hash-table to map CLI sequences to the basic blocks. This allows us to keep our
representation almost completely isolated inside our target, and it facilitates the
merging process from the main branch.

Generic control-flow information and helper functions can be used trans-
parently so that CLI-specific optimization passes look very similar to GIMPLE
passes. However, once the CLI code is generated, only minimal changes to the
control flow graph are allowed, as described in Section 4.1.

3.3 CLI instructions manipulation

A rich set of helper function is provided for creating and manipulating CLI
instructions. Building new CLI instructions is cheap. While it is possible to di-
rectly alter CLI instructions, the preferred method of altering significantly an
instruction is to simply replace it. The internal structure of CLI instructions
is shielded from the use by a set of accessors. Reuse of GENERIC/GIMPLE
operands inside the instructions makes handling or building complex statements
easy. Always faithful to the GIMPLE tuples philosophy we decided that ma-
nipulation of CLI sequences and instructions would be done through a set of
iterators with very similar names and functionality (cf. Figure 2).

3.4 Stack representation

As mentioned before, the CLI bytecode uses a typed evaluation stack for storing
partial results. Knowledge about its depth, what variables have been pushed on
it, what are the types of its slots in a specific point of the instruction stream are
important to implement CLI specific optimizations.



struct c i l s t a c k d {
/∗ . . . ∗/

} ;
typedef struct c i l s t a c k d ∗ c i l s t a c k ;
extern void c i l s t a c k a f t e r s t m t ( c i l s t a c k , c i l s tm t ) ;
extern s i z e t c i l s t a c k d e p t h ( c o n s t c i l s t a c k ) ;
extern c i l t y p e t c i l s t a c k t o p ( c o n s t c i l s t a c k ) ;

Fig. 3. Representation and Manipulation of the Stack

Calculating the contents of the evaluation stack over a whole function is a
fairly trivial task because of the very nature of CLI code. By design, a single
pass over the basic blocks is sufficient for obtaining the full stack information
(see § III, 1.7.5 of [4]).

However, an optimizer might want to significantly alter the code while it is
working on it. Precalculating all the stack information might not be the best
way of dealing with it. Moreover, calculating stack information requires valid
CLI code, but the optimizer might want to temporarily leave part of the code
in an invalid state, yet still have stack information for its next steps.

To solve these problems we decided to create a simple set of functions which
allow an optimization pass to create stacks from basic blocks and propagate them
to their successors without calculating directly the contents of the stack. The
stack information is updated simply by submitting to it the statements which
need to be simulated. This allows for very cheap stack analysis both in terms
of computational and spatial resources. See Figure 3 for an excerpt of the stack
manipulation functions.

At this point, the information we provide on the stack contents is still par-
tial, even though it was more than enough to implement the optimizations we
planned. A full data flow analysis (DFA) would provide accurate information,
possibly integrating the stack facilities with GCC DFA infrastructure.

3.5 CLI types and interaction with the GCC type systems

The GCC type system is very complex because it is designed to model types
coming from a plethora of input languages. This causes some problems when
emitting those types in CLI form. The CLI type system is fairly rich and com-
plete, however its constructs are not enough to entirely cover GCC types.

CLI offers a few basic type categories on which we mapped all other types.
A fairly wide range of scalar types are offered, including 8-, 16-, 32- and 64-bits
integer (signed and unsigned), pointer-sized integers (also known as “native”
integers), single and double precision floating-point types, and typed pointers.
Structured types — value type in CLI speak — can be loosely compared to C
structs but with much more control and different semantics; we used them for
modeling all kinds of non-scalar types.

Value types are composed of an arbitrary number of fields and the offsets of
those fields can be specified explicitly. Regular structs are mapped directly on



value types; unions are mapped by setting the offsets of the different fields so
that they overlap. Complex numbers and vectors are also represented as value
types.

Fixed-size arrays and C 0-terminated strings are mapped to value types as
well because CLI does not offer an equivalent of a fixed size unmanaged array. We
could not use CLI arrays because they are managed garbage-collected objects
with range-checking. No pointer arithmetic is possible on them. C arrays of
unknown size at compile time are mapped to pointers.

We also modeled C99 [6] and GNU-C extended complex types as value types
made of two fields of the appropriate basic type. GCC already lowers operations
on complex types as operations on their single parts, CLI supports manipulation
of value types within variables or on the stack directly, so the expansion of those
accesses is extremely simple. This kind of implementation has the upside of
preserving the semantics of complex types very clearly in the resulting code.

CLI assemblies (the “executable object” format used by CLI) also requires
that every type must be named. We provide a mechanism for automatically
generating names for nameless types including the types that we artificially
create.

Functions also require some additional processing. C specifies function types
(function pointers) but does use them only in the language. Once an object file
has been created, functions are referenced only by their names as symbol in the
executable object. CLI, on the other hand, requires that functions be completely
specified: the name of a function is its complete signature (including the types
of its arguments). This causes problems when supporting C89 with K&R style
function declarations.

4 CLI-Specific Compilation Flow and Passes

As mentioned in Section 2, RTL and CLI do not match well. The compilation
pipeline we are using thus skips all the RTL passes as well as the passes convert-
ing GIMPLE/GENERIC into RTL, and adds passes which convert GIMPLE/-
GENERIC into our specialized stack-based IR, optimize it and finally emits CLI
assembly code from it. The changes we made did not impact the usual com-
pilation pipeline and the changes done into passes.c are enabled only if the
CLI target is selected, leaving the other passes in place if a conventional target
is used. As soon as a flexible pass manager is available, we will be able to re-
implement these changes without touching passes.c. The rest of this section
describes in detail the various passes of the CLI compilation flow.

4.1 Basic blocks reordering and control flow graph interaction

The evaluation stack plays an important role when it comes to control flow.
Every basic block in a piece of CLI code can be thought as having a stack
representation associated with it, holding the depth and types of the stack at
the entry point. Every branch to the basic block must also have a stack with



the same number of slots filled and compatible types for those slots. However,
there is an additional constraint, the CLI code must be verifiable (i.e. checked
for consistency) in a single linear pass (see § III, 1.7.5 of [4]). This forces basic
blocks which are reached only by backward branches to have an initial empty
stack.

These constraints make manipulating the control flow complex. Moving basic
blocks or redirecting branches causes changes which propagate over the control
flow graph and which would be very complex to deal with.

For the sake of simplicity, we introduced an initial pass which reorders basic
blocks to minimize the number of jumps. We then “freeze” the CFG and avoid
further changes which might change the order of the basic blocks (or the branch
directions relative to them).

4.2 Switch expressions break up

The CLI switch instruction implements the multi-way control-flow statement
present in many languages. However, it cannot be used directly for encoding any
C switch statement. The set of “cases” of the CLI switch is a range of adja-
cent values starting at zero. For each value in that range, a branch destination is
stored. Using this construct to implement sparse switches thus would waste a lot
of space in filling the “empty” slots with branches to the default label. On top
of this, the switch instruction cannot specify a range larger than 8192. Larger
switches — even if dense — must be broken up into multiple switch instruc-
tions. We added a pass before GCC builds the CFG that analyzes the switch

statements and breaks them into smaller switch and conditional expressions in
order to work around those constraints.

4.3 GIMPLE/GENERIC to CLI expansion

We lower GIMPLE/GENERIC code to CLI code by descending the original trees
and expanding one node at a time. Many GIMPLE statements can be expanded
into a single CLI instruction making the code generation fairly straightforward
with each node being expanded and implicitly leaving its result on the stack; how-
ever some statements require significantly more effort. Unordered floating-point
comparisons, bit-field extractions and insertions, rotations and some boolean
expressions are turned into fairly large CLI sequences. Before the new represen-
tation was available, those statements were rewritten in GIMPLE, generating a
large number of temporaries; now we are able to store the temporaries on the
stack fairly often.

We also deal with many built-in functions in this phase. Some of GCC’s built-
ins are turned into CLI built-ins provided by the support library which ships with
our back-end. Any JIT compiler aware of the semantics of those built-ins can
directly take advantage of them. Other JITs will have to rely on the runtime
library. Some built-ins which can be mapped efficiently to CLI instructions and
are expanded in this phase. For example __builtin_memcpy is turned into a
cpblk instruction.



This phase was designed to improve on our previous work and generate better
code. However, the quality of the resulting CLI code still depends on the input
code. Deep GENERIC trees result in excellent and compact code making heavy
use of the stack. Shallow trees and GIMPLE temporaries result in fat code and
large metadata sections needed to encode CLI local variables. Instead of trying
to fix up these inputs up front, we introduced some later optimizations passes to
clean up these code sequences. This has the side benefit of allowing us to make
this critical phase emit “naive” code, thus keeping it simple and robust.

4.4 Missing prototypes fix-up

This is not an optimization phase, but it is necessary for fixing up functions
which do not have a prototype. When such a function is called, the types that
it accepts are treated in the same way as the arguments of a variable argument
function (i.e., char and short are promoted to int, etc.) However, the function’s
actual arguments can be of unpromoted types. The function signature in CLI
uses the promoted types so that the linker can find it correctly and this pass
creates artificial local variables with the correct argument types, converts the
passed arguments and stores them in those variables. Those locals are then used
instead of the arguments. The fix happens only if the promoted argument type
is different from the actual type, other arguments are left alone.

4.5 Redundant temporaries removal and stack promotion

The middle-end tends to generate many temporaries. The normal compilation
flow of GCC removes many of them during register allocation. In our case, how-
ever, there is no register allocation. This new phase scans the code and locally
tries to identify temporary variables and to promote them to the stack.

Ideally, a full data flow analysis is needed to extend this phase across basic
blocks. Yet, we implemented this phase as a sort of improved peephole optimizer,
and we obtained very good results with very little effort. The pass works as
follows:

– We scan for variables whose address has been taken and we tag them. They
remain untouched.

– We then look for stloc instructions (store to local variable). For each of
them, the depth of the stack is recorded and a matching ldloc (load local
variable) is looked for. If the stack has not been altered below the depth
of the stloc between the two instructions and if the depth is the same at
both instructions, the stloc is replaced by a dup stloc sequence and the
corresponding ldloc is removed. If the value on the stack is an integer larger
than the temporary variable type, a conversion is put before the dup in order
to simulate the truncation caused by writing to the variable.

– The code is scanned a second time and other simple copies which cannot be
promoted on the stack are identified. This involves finding ldloc/stloc or
ldarg/stloc pairs and replacing the load from the target variable with a



load from the source variable if it has not been modified in between. This
step can be seen as a very simple copy propagation mechanism and works
across basic-blocks.

– Finally, dead stores left by the previous steps are removed.

Consider the GIMPLE code of Figure 4. Figure 5 illustrates the transforma-
tions of this pass: (a) is the initial IR generated by the middle-end. In (b), the
variables t1 and t2 are clearly redundant and they are promoted to the stack. In
(c), the variable c is copied into t3. Finally, in (d), the dead stores are removed.

Note that this transformation is already profitable after step (b) because
the dup instruction is encoded on one byte, while the ldloc needs two or four
bytes (except for the special case of variables numbered 0 to 3, where one byte
is enough and the transformation is neutral).

t1 = a + b;
t2 = p->foo

t3 = c
t4 = (t2 - t1) + t3

e = t4

Fig. 4. Original GIMPLE Code

ldloc a

ldloc b
add

stloc t1
ldloc p

ldfld p->foo
stloc t2
ldloc c

stloc t3
ldloc t1

ldloc t2

sub
ldloc t3

add
stloc e

ldloc a

ldloc b
add

dup
stloc t1

ldloc p
ldfld p->foo
dup

stloc t2
ldloc c

stloc t3
sub
ldloc t3

add
stloc d

ldloc a

ldloc b
add

dup

stloc t1

ldloc p
ldfld p->foo
dup

stloc t2

ldloc c

stloc t3

sub
ldloc c

add
stloc d

ldloc a
ldloc b

add
ldloc p
ldfld p->foo

sub
ldloc c

add
stloc d

(a) (b) (c) (d)

Fig. 5. Optimization Steps

4.6 Redundant conversions removal

GIMPLE conversion nodes (CONVERT_EXPR and such) are often expanded into
actual conversions on the stack because we process one node at a time and we
do not have enough visibility to decide when a conversion is redundant.

We first remove the conversions which behave as no-ops simply looking at the
types of the stack slots. Then, we also try to remove conversions made useless
by the particular use of their result. For example, when storing a stack slot to



a local variable or memory location, holding an integer smaller than 32-bits, an
implicit truncation is done. If a conversion from a 32-bit integer to a 16- or 8-bit
integer precedes a store to an 8-bit integral local variable it is removed.

4.7 Peephole optimizations

This pass is used for cleaning up simple instruction patterns generated by the
previous passes and are fairly simple to deal with. Currently this phase mostly
removes naive instruction sequences emitted when dealing with functions with
a variable number of arguments. These instruction sequences usually involve
putting the address of a local variable or argument on the stack and then writing
or reading indirectly into the variable using this address. These patterns can be
easily removed and replaced by regular loads and stores.

4.8 Branch condition replacement

In this pass, the conditional branches at the end of each basic block are analyzed
and potentially changed in the aim of reducing the code size. If one of their edges
goes to the next basic block, the pass checks if the instruction can be emitted in
a single compare-and-branch instruction with the edge going to the basic-block
becoming a fall-through. If this does not happen this pass will try to invert the
branch condition and the outgoing edges to make the fall-through possible.

4.9 CLI assembly emission

The last pass emits the CLI code. It is fairly straightforward as the IR maps
one-to-one with the CLI code. This phase, however, contains a few extra func-
tionalities which are not usually required by an assembler emission phase. After
all the functions have been emitted, this pass proceeds by emitting the type
declarations, as well as the global variables, static variables (including function-
static ones which cannot be declared inside a CLI function and thus must be
“promoted” as plain global variables) and the string constants.

5 Examples and Experiments

This paper is not about quantitative achievements. Rather, it is about presenting
the new IR we added to GCC, its design and its purpose. Still, as an illustration
of its convenience, we quickly report the improvements that we have been able
to achieve with a minimal effort. In the interest of space, we do not report in
this paper the code of the optimizations themselves. However, all the above
mentioned transformations are fully implemented and publicly available in the
branch st/cli of the GCC Subversion repository.

The code transformations we implemented so far mostly target the code size.
Performance is less impacted because a JIT will eventually transform the CLI to



native code, replacing stack elements with machine registers. Classical optimiza-
tions applied by the just-in-time compiler will remove some of the inefficiencies
of the bytecode4.

We used benchmarks from the MiBench [5] and MediaBench [8] suites, as well
as a few proprietary multimedia benchmarks. All benchmarks were compiled at
optimization levels -O2 and -Os with and without our new IR. Figure 6 shows
that the modest effort made at implementing the above mentioned optimizations
immediately pays off for most benchmarks. The small degradations actually are a
bug fix: the previous implementation was too aggressive at removing conversions,
and in some corner cases it generated incorrect code.

While the code size may be of relative importance to the general purpose
computing, it does matter for embedded systems because the non volatile mem-
ory is a significant part of the total cost, and therefore it must be carefully
sized. Anyhow, our proposed IR provides a means to manipulate a stack-based
instruction set. As such it can also be used to implement optimizations targeted
at performance.
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Fig. 6. Relative Code Size

6 Conclusion

In the course of our research, we are interested in applying virtualization tech-
nologies to ease the programming of embedded systems. In particular, we con-
sidered the CLI format. We have been developing an initial port of the GCC
compiler for this purpose. While we were able to generate reasonable code, we
noticed that we were unable to take advantage of the evaluation stack, simply
because the GCC internals cannot represent it.

This paper presents the new lightweight stack-based intermediate represen-
tation that we added to GCC for this purpose and made publicly available in

4 An interpreter would be faster because of the reduced number of instructions. The
JIT compilation time can also benefit from these improvements.



the GCC source repository. We describe the data structures representing CLI
instructions and the helper functions, as well as the stack representation. As
an illustration, we also present a number of simple optimizations that we wrote
using our new IR, and we report the code size improvements we achieved.

We strongly believe in the benefits that virtualization can bring to embedded
systems. Being able to generate optimized CLI code from the C language is a
mandatory step towards our goals. Our contribution clearly shows the need for
exploiting the evaluation stack, and the benefits one can draw from our stack-
based intermediate representation.
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