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Abstract

Off-chip memory accesses take a long time on modern processors. As such,
load instructions that miss in the last-level cache significantly reduce the efficiency
of the processor. Various architectural optimizations improve performance and/or
reduce energy by predicting these off-chip memory accesses before executing the
load instruction.
A hit/miss predictor predicts whether a load will hit or miss in a cache once

it executes. Hit/miss predictors have been studied independently by a number of
researchers. These researchers borrow ideas from branch prediction and use some
techniques specific to hit/miss prediction. It is, however, not clear what the opti-
mal design for a hit/miss predictor is. In this report, we perform a first thorough
analysis of hit/miss prediction. We first evaluate various prediction schemes de-
scribed in the literature. Then we analyze the best predictor from the literature
and apply several optimizations to increase its accuracy.
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1 Introduction

As a corollary of Moore’s law, every 18 months performance of microprocessors is
doubled. This law has been more or less respected since the last 20 years, but the
performance of memory has not known such improvements. Thus accessing the main
memory is becoming more and more costly in terms of processor cycles. So each off-
chip access reduces the overall efficiency of the processor because it has to wait for
data to return from memory. Even if the cache hierarchy is very efficient most of the
time, we still don’t know how to get rid of the effect of theses misses.
One possible strategy is to use a load hit/miss predictor in order to predict early in

the pipeline if a load instruction will hit or not in the cache. Based on this prediction,
we can adapt the behavior of the processor to reduce the effect of potential misses.
Several uses of this scheme are presented by Musoll and Lang [7], but they only talk
about prediction for the L1 cache, while in our study we concentrate on the last-level
cache, which is often the L2 cache in modern processors. Since L2 misses take more
time than L1 misses, they are most costly for the processor and thus, it seems more
beneficial to work at this level.
Several uses for the L1 cache described by Musoll and Lang can be adapted for

the L2 cache but the more interesting use is for Simultaneous Multi-Threading (SMT).
SMT is an architectural technique design to increase the use of the different part of
the processor. Basically, it means that the processor can run two threads at the same
time. But several resources of the processor are shared and thus if one thread is waiting
because of an off-chip miss, these resources are reserved by the thread but are not used
by it because its execution is stalled. But if we can predict these misses, we can give
the entire processor to the not stalled thread and thus increase the overall efficiency of
the processor.
As prediction is never 100% accurate, we need to knowwhat are themistakes made

by the predictor. We define a hitmisprediction as a misprediction on a hit, i.e. a miss
has been predicted but it is actually a hit, and a missmisprediction as a misprediction
on a miss, i.e. a hit has been predicted but it is actually a miss.
Contrary to branch prediction, the fact that we have two types of misprediction

induces a difficulty to exploit the results. Indeedwe need to find some metrics that are
able to accurately show the performance of the predictor. But as there is a prevalence
of the hits, we can not just take the average of the number of hitmispredictions and
missmispredictions. We choose to use four metrics also used in diagnostic testing [2].
As there is a lot of hits, it is often hard to predict misses accurately. This is why

simple designs have a lack of performance in miss prediction and thus we need com-
plex designs to achieve reasonable performance. But as designs become complex, the
area cost increases and we have to make a trade-off between performance and area
cost based on the potential contribution on the performance of the overall system.
This report is organized as follows. First we describe the tools we use to make this

study. Then we present and analyze several predictors from the literature. After that
we present the different improvements we try to make. Finally we conclude in the last
section.
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2 Evaluation environment

2.1 Benchmarks

To evaluate the load hit/miss predictors, we perform simulations using several bench-
marks taken from the SPEC CPU2006 [1] workload. In Table 2, we present the different
characteristics of the benchmarks we use. We first worked with 18 benchmarks but the
floating point benchmark povray has not enough misses in the L2 cache to be interest-
ing for our study. On the 17 other benchmarks, 11 are integer benchmarks and 6 are
floating point benchmarks.

2.2 Simulations

In order to test the different predictors, we need a simulator to implement them. We
also need to run this simulator to execute the benchmarks.
One problem of simulation is the execution time : some benchmarks can take more

than one week for only one simulator run. And as we have to do hundreds of runs,
we need an alternate solution. This is why we use a set of simpoints [3] to have a rep-
resentation of a benchmark shorter than the complete one but that still well represents
the type of work performed by the benchmark. Constructing the simpoints consists of
having the profile of execution of the benchmark, i.e. see what interval of the program
correspond best to the overall program behavior. Only these intervals are simulated.
We set the size of one interval to 100 millions of instructions. Once we compute the
simpoints, we create checkpoints at the beginning of the selected intervals to run them
later.
We implement all the predictors in the SimpleScalar simulator with the Alpha in-

structions set. As presented in Table 1, we choose to set a configuration that can be
found in modern microprocessors.

Cache Size Number of sets Block size Associativity Replacement Policy
Data L1 32 KB 256 32 4 LRU
Data L2
(unified)

1 MB 2048 64 8 LRU

Table 1: Configuration of the caches

2.3 Exploitation of the results

One difficulty of this study is the fact that there is a strong bias towards the hits in
the results, so we have to find efficient metrics to report the results. We choose four
metrics also used in diagnostic testing [2]. Two of them show the results for the hits
and the other two the results for the misses. They are a representation of the coverage
and the accuracy of the predictors, i.e. how many hits/misses we can predict on the
total hits/misses and how many errors we make on the predictions. The four metrics
are:
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• Sensitivity (SENS), coverage for the hits :

number of hits correctly predicted

number of hits

• Predictive value of a Positive Test (PVP), accuracy for the hits :

number of hits correctly predicted

number of hits predicted

• Specificity (SPEC), coverage for the misses :

number of misses correctly predicted

number of misses

• Predictive value of a Negative Test (PVN), accuracy for the misses :

number of misses correctly predicted

number of hits predicted

For these metrics, higher is better. But we can not have 100% in all the metrics
because for that we need to have no hitmisprediction and nomissmisprediction which
is nearly impossible. For example, we can increase the miss coverage by predicting
more misses by we lose performance in miss accuracy and hit coverage (as we predict
more misses, we predict less hits). To increase all the metrics, we need to reduce at the
same time the number of hitmispredictions and the number of missmispredictions.

3 Analysis of the benchmarks

Different benchmarks have different behavior in terms of cache misses, and to try to
understand this miss behavior, we plot what we call the miss profile. The miss profile
of a benchmarks is the accumulative fraction of misses as a function of the bias of the
loads, which is the fraction of time the load misses. This kind of graph is useful to
know what type of miss behavior a benchmark mainly have. A benchmark is easy
to predict if its loads have a very periodic behavior. For example, if a majority of the
misses are caused by always-miss loads (bias=0), such a behavior is easy to record
and thus we can make accurate predictions. On the other hand, if the miss profile
of some benchmarks shows that nearly all the misses are caused by loads with many
different biases, then we have to identify many different behaviors and thus it is hard
to predict accurately. An even more difficult situation arises if an important fraction
of the misses is generated by loads that nearly always hit (bias > 0.99), as we need to
predict very rare events. Moreover, a weakness of such representation is that we only
know the bias of the loads and thus only the global behavior of the loads over the
whole execution of the benchmarks. But there are many different behaviors that have
the same bias in the end, so we can not have an idea of the precise miss behavior of the
benchmarks. Figures 1, 2 and 3 show the miss profiles for the different benchmarks
we use for the L1 and L2 caches.
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Benchmarks Type Inst Simpts Miss rate L2 Category
L1 L2 Misses

400.perlbench INT 488 8 1.51 0.02 5428 Programming
Language

401.bzip2 INT 384 17 6.13 2.06 362864 Compression
403.gcc INT 113 19 5.99 2.19 389076 Compiler
429.mcf INT 344 24 34.47 22.17 6559246 Combinatorial

Optimization
445.gobmk INT 287 17 0.94 0.09 21627 Artificial Intelli-

gence
456.hmmer INT 2498 9 0.68 0.01 2889 Search Gene

Sequence
458.sjeng INT 2941 26 0.47 0.11 28334 Artificial Intelli-

gence
462.libquantum INT 1925 20 48.01 24.01 2793777 Physics/

Quantum Com-
puting

464.h264ref INT 602 18 0.96 0.18 60093 Video
Compression

471.omnetpp INT 716 13 10.24 5.84 1311045 Discrete Event
Simulation

473.astar INT 937 18 4.15 0.62 174973 Path-finding
Algorithms

410.bwaves FP 2631 20 9.61 4.57 1361084 Fluid Dynamics
433.milc FP 1053 19 10.24 5.87 1742180 Physics/

Quantum Chro-
modynamics

435.gromacs FP 2352 19 3.88 0.18 43006 Biochemistry/
Molecular
Dynamics

437.leslie3d FP 1869 22 13.92 4.50 1325800 Fluid Dynamics
444.namd FP 2204 20 3.87 0.03 7311 Biology/

Molecular
Dynamics

453.povray FP 1193 19 4.94 8.94 x10
−6 2 Image

Ray-tracing
470.lbm FP 1105 13 13.18 6.59 897780 Fluid Dynamics

Table 2: Work-set of benchmarks : name, type, number of instructions in billions (Inst),
number of simpoints (Simpts), miss rates for the L1 cache (L1) and for the global cache
hierarchy (L2), number of misses in the L2 cache (L2Misses) and category of the bench-
marks.
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Figure 1: Miss profile of the perlbench, bzip2, gcc, mcf, go and hmmer benchmarks (inte-
ger benchmarks)
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Figure 2: Miss profile of the sjeng, libquantum, h264ref,omnetpp and astar benchmarks
(integer benchmarks)
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Figure 3: Miss profile of the bwaves, milc, gromacs, leslie3d, namd and lbm benchmarks
(floating point benchmarks)
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The integer benchmarks have a lot of loads that are difficult to predict because they
don’t have a full biased behavior: except for mcf, few loads are always-miss loads. In
the case of mcf, we can see that 50% of the loads are always miss loads, but the other
50% are constitued of loads that are as difficult to predict as for the other benchmarks.
An other exception is libquantum, which seems to have a very recurrent behavior as
nearly all of its misses have a bias of 0.75. And thus, if this global behavior is due to
some loads that periodically miss, then these misses are easy to predict.
The floating point benchmarks are on average relatively simpler to predict because

they have a lot of loads which always have the same behavior. For example, lbm has
50% of its misses that are always-miss and 50% that have a bias of 0.5. In the case of
bwaves, we can also see some potential regularity in themiss behavior. On the contrary,
namd has nearly 40% of its misses that have a bias of nearly 1. It means that many loads
miss only a few times, but are still responsible for 40% of the total misses.

4 Load Hit/Miss predictors

We study several predictors from the literature, from the most simple to complex
history-based predictors. First, we describe the simple predictors that are not very
accurate but very basic in their concept. And then, we present more complicated pre-
dictors mostly based on history of hits and misses. Most of these predictors have been
studied by Musoll and Lang [7]. We also study the Limousin predictor, created by
Limousin et al. [4]. The area cost for all the predictor with tables is 4 Kbit, which is a
realistic number for this kind of predictor. The results of this study are presented in
Figure 4. We show the results for each benchmark and an average across all bench-
marks.

4.1 Simple predictors

The four simplest predictors are the Always Hit, Always Miss, Saturated counter and
Bimodal predictors.
The design of the Always Hit predictor comes from a simple observation: thanks

to the good properties of the cache hierarchy, the miss rate is generally low. Thus
always predicting a hit is a good choice if the cost of a missmisprediction is not high.
On the contrary, if the missmisprediction penalty is high, we can choose to always
predict miss and use the Always Miss predictor. The results of these predictors are not
presented in Figure 4 but can be derived form Table 2.
The Saturated counter predictor is derived from the implementation in the Com-

paq Alpha 21264 [5]. It consists of a 4-bit saturated counter that tracks the hit/miss
behavior of the loads. The counter is incremented by one on a hit and decremented
by two on a miss. The prediction is done looking at the high order bit of the counter:
predict hit if it is 1, predict miss otherwise.
As presented in Figure 4, this predictor has a very good accuracy and coverage for

the hits (except for mcf ) but for the misses, the results are low. In fact, the counter is
nearly always saturated towards hits and misses have to happen in burst if we want to
be able to detect and predict them accurately. The update policy decreases the counter
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by two in order to reduce this effect. But still, some pattern like one miss, several
hits, one miss, several hits can’t be detected because the prevalence of hits drives the
counter into a saturated “predict-hit” state. Moreover, only recording the global his-
tory of hits and misses is not sufficient, we need to catch this kind of information more
precisely.
One way to do this is by recording hits and misses for specific situations, e.g. when

executing specific load instructions. Thus, in the Bimodal predictor we try to catch
the past behavior of each load instruction. This predictor is the same as the Bimodal
branch predictor [8]: a table of saturated counters indexed by the PC of the load in-
struction. Here, saturated counters are also used but we record only local information
as nearly each load has its own counter (if the size of the table is sufficient). Thus the
results are much better: we have on average the same accuracy and coverage on the
hits than for the Saturated counter predictor but we have a significant gain in terms
of accuracy and coverage on the misses. So we see that making predictions based on
the precedent behavior of a load instruction is efficient. But as we index the table with
the PC of the load, aliasing can occur. Moreover, we can only predict accurately if the
load has nearly always the same behavior over the execution. Thus to make better
predictions, we have to record even more precise information.

4.2 History-based predictor

The Bimodal predictor recognizes that different load instructions have different hit/miss
behavior. The next step is to recognize that a single load instruction is not always a hit
nor always a miss. Hereto, we record the listing of hits and misses. The Per-address
predictor is organized in two levels: the first level is indexed by the PC of the load in-
struction (like in the Bimodal predictor) and in each entry, we store H bits of the load
hit/miss history (1 represents a hit, 0 represents a miss). The second level is composed
of 2H 2-bit saturated counters and we index this table using the H bits of the history.
By this meaning, we can accurately predict the load if it has a periodic behavior. In-
deed, each time we see the same history we map to the same entry in the second level
table and use the same counter to make the prediction. If the behavior of the load is
always the same then the counter is in the good saturated state.
The results for this predictor are nearly the same as for the Bimodal predictor in

terms of hits. For the misses, we see that we have a little less coverage for some bench-
marks but, on average, it is better, andmoreover, we gain a lot in accuracy. That means
that the history we record brings more precise information and the predictor is able
to use that information. But here we still have the aliasing problem in the first level
table and moreover we can have aliasing in the second level table. Thus, even if we
catch the correct information in the tables, we can lose it before it is useful because of
aliasing.
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Figure 4: SENS, PVP, SPEC and PVN for the state-of-the-art predictors : a saturated
4 bits counter (Satcount), a per-address two level with 10 bits history and 256 entries
(Padd), a static window with a window of 256 (Statwin), a per-distance two level with
10 bits history and 256 entries (Pdist), a per-distance relaxed strides with 256 entries
and an offset of 4 (Relstrid), a bimodal with 2048 entries and 2 bits counters (Bimodal)
and a Limousin predictor with 256 entries (Limousin).



The Limousin predictor is another predictor with a table indexed by PC. In each
entry, there are two counters : one counting the number of hits between the last two
misses and one counting the number of hits since the last miss. Tomake the prediction,
we read the two counters and if they are equal, we predict a miss else we predict a hit.
This predictor is designed for tracking a periodic behavior of the load with a period
without too many variations. Limousin et al. [4] also put a tag for each entry, to avoid
aliasing in the table, but we remove them to have nearly the same cost in area as the
other predictors. We also set the number of bits of the counters, so they are considered
as 8-bit saturated counters.
The results for this predictor are better than for the Bimodal predictor but are worse

than the Per-address two-level. We can see it has a good miss coverage but it is at the
cost of the miss accuracy and the hit coverage. This means that this predictor predicts
too many misses on average.
The concept of counting the number of hits between misses is well developed by

Musoll and Lang [7]. They call it “distance” and they have constructed several predic-
tors based on this principle.
They make the observation that most of the misses occurs at short distances, i.e. the

misses occur in bursts. So a simple way to use that is to predict a miss if the distance is
not too high. This is how the Static-window predictor works: under a certain distance,
called the window size, a miss is predicted, and over this distance a hit is predicted.
Depending on the size of window, the predictor can accurately predict all the hits.

This is why we have a very good coverage. But for example, for a window size of 256,
there is not always so much misses in the window, so we will do a lot of hitmispre-
dictions just to predict all the misses. Thus the accuracy in terms of misses and the
coverage in terms of hits are quite low.
After that finding, they have tried to construct a predictor on the model of the Per-

address two-level predictor: the Per-distance two-level predictor. They do exactly the
same thing as for the Per-address predictor but instead of indexing the first table with
the PC of the load instruction, they index it by the current distance. This way they can
record specific information for each distance.
The results are better than the Static window predictor so that means that this way

of recording information is efficient. But if we compare with the Per-address predictor,
although it has the same performance for the hits, the Per-address is nearly always bet-
ter than the Per-distance for the misses. Thus it seems that using a global information
(the distance) is not the best way to build a local history information.
The last predictor constructed on the distance concept is the Per-distance Relaxed

Stride predictor. It is composed of a table indexed by the distance, and in each entry of
this table, there are two counters, called stride. The counters record the same thing as
in the Limousin predictor, so these two predictors are quite comparable in their design.
But Musoll and Lang use an offset for the comparison between the two counters : they
predict a miss if the value of the second counter is between the value of the first one
plus the offset and the value of the first one minus the offset. By this, they have a way
to predict a miss when they are at a distance where the access is likely to be a miss
based on what they have previously recorded.
The results are not very good for the hit coverage compared to other predictors

with tables. As they have a relaxed condition to predict miss, they actually predict
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more misses and increase the miss coverage, but at the cost of the miss accuracy. If
we compare with the Limousin predictor, the Relaxed stride predictor has nearly the
same miss coverage but the difference in accuracy is more important, so the Limousin
predictor is better. This confirms our first observation on the usefulness of using the
distance as a prediction parameter.
We can notice that all the results of the predictors that record history are very good

on the libquantum benchmark. One explanation is that nearly all the misses of this
benchmark have a bias of 0.75, so it is possible that these misses have a very regular
behavior and thus a history-based predictor can easily catch this behavior and make
accurate predictions. On lbm, we can observe similar results we can explain the same
way.
In conclusion, for making predictions for the L2 cache, the Per-address scheme

seems the more efficient. Although Musoll and Lang present the Per-distance scheme
as interesting for the L1 cache, for the L2 cache the performances are not comparable
with the Per-distance scheme. And within the predictors that use addresses, the Per-
address two-level predictor is the best. This is why we work on the Per-address two-
level predictor.

5 Improvements and results for the Per-address predic-

tors

From the original design of the Per-address predictor we try to do several modifica-
tions to improve its performance. Some modifications are useful and bring additional
performance but for some others either the analysis is incomplete at this time or the
results are not significant. We present only the results for the miss accuracy and cov-
erage because for the hits, the results are nearly always the same for a large majority
of the benchmarks. Indeed, except for mcf which has results between 0.95 and 0.97 for
the hit coverage and between 0.93 and 0.96 for the hit accuracy, the results are above
0.99 for the hit coverage and accuracy.

5.1 Improvements

5.1.1 Size of the first level table

The first level table of the two-level predictor is indexed by the PC of a load instruc-
tion. The first improvement we can make is to increase the size of this table in order to
reduce as much as possible the number of load instructions mapped to one entry. Fig-
ure 5 shows the results for different size of the first level table. We see that on average,
the performance increases with the size of the table, until a saturation due to the finite
number of the load instructions. In some cases, we can observe some special results.
For gobmk and sjeng, we see no saturation between 2048 entries and 16384 entries and
so we can potentially gain more by increasing the number of entries. For hmmer, alias-
ing in the first level table seems very destructive when the number of entries is small.
And finally, even if namd has the same results as the average for the coverage, for the
accuracy, it seems that having less entries induce a constructive aliasing.
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Figure 5: Evolution of the performance with the size of the first level table in the two-
level predictor with an history size of H=10

In summary, increasing the number of entries in the first level table bring better
performance for all benchmarks and taking a size between 256 and 2048 entries seems
a good choice for the majority of the benchmarks.

5.1.2 Size of the history

In each entry of the first level table, we record the local history of the load instruction
mapped to this entry. By increasing the size of this history, we can catch more precisely
the behavior of the load instruction. But as we increase the size of the history, we
exponentially increase the size of the second level table. To keep a realistic cost for our
predictor, we can not increase too much this size. Thus we use a hash function to fold
the history to 10 bits before accessing the second level table. The results are presented
in Figure 6. On average, increasing the size of the history appears to be beneficial
especially between 10 and 16 bits of history.
For some benchmarks, like bzip2, h264ref and gromacs,this effect is particularly vis-

ible but there is nearly no change in the results for the other history size. One expla-
nation is that 16 is the number of times we can put 4 bytes in a cache line. So if a
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Figure 6: Evolution of the performance with the size of the first level table in the two-
level predictor for a number of entries N=2048

load instruction loads a table of integers, for example, this load will make 1 miss and
15 hits after. And by having 16 bits of history, we can catch this behavior. For some
other benchmarks, like sjeng, astar and bwaves, the performance still increases with
more than 16 bits of history. A third category of benchmarks is the one where history
size has nearly no influence on the results. This means that the history is not able to
catch the true behavior of the load instructions of the benchmarks, or we still don’t
have enough bits of history to record it properly. We also see that increasing the size
of the history with hashing does not bring any improvement. So hashing destroys all
the new information we record with more history bits by creating more aliasing in the
second level table. The benchmarks from the first two categories are the most affected
by hashing because of the usefulness of the complete history. For the third category,
hashing decreases the results but not dramatically. On average, it seems more useful
to keep an history of 10 bits than increasing this number and hashing to have a second
level table with a reasonable size.
These results show that increasing the size of the history we record seems, on av-

erage, quite efficient and, for some benchmarks like bzip2, h264ref and gromacs, a size
of 16 bits boosts the performance. Unfortunately, We still have the problem of the ex-
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ponential cost of increasing the number of entries in the second level table, as hashing
is not an efficient solution.

5.1.3 Tags

The first improvements we make are only changing the parameters. With tags, we
begin to change the design of the predictor. We take the idea of adding a tag in each
entry of the first level table from Limousin et al.. We also upgrade the update policy in
order to change the tag in an entry only if the load instruction we record is a miss. This
policy tries to reduce the effect of the prevalence of hits, so we keep more information
about the misses in the table. By adding a tag in the first level table, we try to reduce
the aliasing in this table. The results presented in Figure 7 show several things. First,
with a table as large as 2048 entries, the effect of the tags is nearly null and thus it
means that for most of the benchmarks there is no aliasing with this number of entries.
gobmk and sjeng are the two benchmarks where the tags are useful because they are the
two benchmarks that still have a gain when we increase the number of entries from
2048 to 16384 (cf §5.1.1).
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We also see that we can reduce the size of the first level table to 256 entries with-
out losing performance. It means that having a tag effectively reduce aliasing in the
first level table. The only exception is for milc where the miss coverage decrease with
the tags. It can be due to some ping-pong phenomena between two load instructions
which miss often and that are mapped to the same entry. Thus we make more miss-
misprediction and have less miss coverage.
We can even reduce the size of the table to 32 entries: we lose performance but

we are still better on average than with 256 entries and no tag. For omnetpp, we be-
gin to see the destructive effect of the ping-pong phenomena. These phenomena are
even stronger when we decrease the number of entries to 4. At this point, even if we
keep good performance for the miss accuracy on average, we lose a lot in coverage.
Moreover, for some benchmarks like gcc, omnetpp, bwaves, and lbm the coverage with
the tags is really low compared to without tag. As accuracy increases during the same
time, that means we predict less misses so the coverage decreases, but we predict them
well.
Finally, having a tag in the first level table nearly avoids aliasing and thus we can

reduce the size of the table from 2048 to 256 entries without losing performance. More-
over it is more cost effective to have less entries with a tag than more entries without
tag. But we still have to keep a certain number of entries and maybe use associative
tables to avoid ping-pong phenomena.

5.2 Other experiments

We try to implement some other ideas but these modifications do not bring any im-
provements and so we do not show results, we only discuss possible explanations
about why such modifications are not useful and what we can infer on the bench-
marks behavior.

5.2.1 Number of bits of the counters

As the Per-address two-level predictor uses saturated counter to record some behavior,
we try to see what is the effect of changing the number of bits of these counters. As
we increase this number, aliasing has less impact on performance. A side effect is that
it takes more time to record a new behavior, but we can reduce this effect by adapting
the update policy of the counters, like in the Saturated counter predictor. There is
nearly no improvement in the results when we replace the 2-bit saturated counters
with 3 or 4-bit saturated counters. Even for some benchmarks, there is some loss in
performance. This means that either there is no significant aliasing in the second level
table or increasing the number of bits of the counters is not sufficient to reduce it. We
still have to work on it to know the impact of aliasing in the second level table.

5.2.2 Filtering of the entries

A difference between load prediction and branch prediction is the bias of the outcome.
To reduce the effect of the prevalence of hits, we put a simple Bloom filter before the
access to the predictor. This Bloom filter is a simple table indexed by the PC of the
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load instructions and where we keep a counter for each entry that counts the number
of time the load misses. If this number is above a threshold, then we use the predictor
to make prediction. If not, we simply predict a hit. By this construction, we hope to
effectively reduce the number of hits we deal with in the predictor and thus having
less biased information. But the results are not as we expect, and having a Bloom filter
change nothing to the behavior of the predictor. Indeed, the Bloom filter is efficient
to filter the nearly always-hit loads, but Figures 1, 2 and 3 show that such loads are
not predominant. Moreover, in the majority of the benchmarks, most loads that miss
have a bias between 0.4 and 0.8. Thus, if they miss often in the beginning and after
are always-hit, the Bloom filter can not filter this type of load, so they still pollute the
predictor.
To filter the load instructions, this solution, as we have implemented it, is not ef-

ficient. As we see, adding a tag in the first level table is a more appropriate solution
to filter loads. When using tags, loads can be filtered from the first level table during
periods of always-hit.

5.2.3 Aliasing in the second level table

We see that recording more bits of history for each entry is quite efficient, but the size
of the second level table increases with each more bit. Thus we try to reduce this size
by hashing the history before accessing the table. As the results with the folding hash
function are not good enough, we try to use another hash function taken from branch
prediction [6]. But the results for this hash function are even worse than the results
with the first hash function.
This means that even with a different hash function we still have destructive alias-

ing. To try to understand why aliasing in the second level table destroys so much
information, we analyze how often each entry of this table is used. With this kind of
information, we can also try to implement a specific hash function that will not induce
aliasing. But we find no apparent pattern in the entries used that explains why aliasing
is so destructive.
As we can not use hashing without destroying a part of the information we record

in the history, we try to change how the history is recorded to reduce the effect of
aliasing. We use saturated counters to record hits and each time there is a miss we
change of counter. Thus we have just one counter that is saturated when we have
many hits for a long time. We try different configurations with different number of
counters and different number of bits.
The preliminary results we have show that no single configuration is efficient for

all benchmarks. Moreover, on average, the results are worse than with the normal
history. Thus, this way of recording history seems not precise enough to make good
predictions.

6 Conclusion

In this study, we have worked on load hit/miss predictors to have an idea of the per-
formance of several predictors proposed in the literature. For that we have used four
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metrics to represent the hit/miss accuracy, i.e. how accurate the predictor is on predict-
ing hits/misses, and the hit/miss coverage, i.e. how many hits/misses the predictor
can predict over the total number of hits/misses.
We have shown that with these metrics, the Per-address two-level predictor seems

to be the more powerful design. Then we have successfully improved its performance
by increasing the size of the different levels and by adding tags in the first level table.
As we have seen, tags are a good trade-off to reduce aliasing in the first level table
and to filter the entries that are not useful. Increasing the size of the history is good
on average and extremely important for some benchmarks. We have also seen that
keeping a reasonable size for the second level table by hashing the history decreases
performance.
The results show that it is possible to have good performance on load hit/miss

prediction on average but for several benchmarks, the results are still low even with
our improvements. Future studies can be made to better understand the importance
of aliasing in the second level table and how to reduce it.
Finally, we see that the Per-address two-level predictor is a quite efficient predictor

but several other designs can be constructed and studied, to maybe have load hit/miss
predictors as efficient as branch predictors.
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