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Abstract Logical Concept Analysis is Formal Concept Analysis where
logical formulas replace sets of attributes. We define a Logical Infor-
mation System that combines navigation and querying for searching for
objects. Places and queries are unified as formal concepts represented
by logical formulas. Answers can be both extensional (objects belonging
to a concept) and intensional (formulas refining a concept). Thus, all
facets of navigation are formalized in terms of Logical Concept Analysis.
We show that the definition of being a refinement of some concept is a
specific case of Knowledge Discovery in a formal context. It can be gen-
eralized to recover more classical KD operations like machine-learning
through the computation of necessary or sufficient properties (modulo
some confidence), or data-mining through association rules.

1 Introduction

Information systems offer means for organizing data, and for navigating and
querying. Though navigation and querying are not always distinguished because
both involve queries and answers, we believe they correspond to very differ-
ent paradigms of human-machine communication. In fact, the difference can be
clarified using the intension/extension duality.

Navigation implies a notion of place, and of a relation between places (e.g., file
system directories, and links or subdirectory relations). Through navigation, a
user may ask for the contents of a place, or ask for related places. The ability
to ask for related places implies that answers in the navigation-based paradigm
belong to the same language as queries. In terms of the intension/extension
duality, a query is an intension, and answers are extensions for the contents
part, and intensions for the related places.

In very casual terms. we consider navigation with possibly no map, i.e., no
a priori overview of the country. Related places form simply the landscape from
a given place as shown by a “viewpoint indicator”. However, our proposal is
compatible with any kind of a priori knowledge from the user.

With querying, answers are extensions only. A simulation of navigation is
still possible, but forces the user to infer what could be a better query from
the unsatisfactory answer to a previous query; i.e., infer an intension from an
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extension. This is difficult because there is no simple relation between a variation
in the query, and the corresponding variation in the answer. The experience
shows that facing a query whose extension is too vast, a user may try to refine
it, but the resulting extension will often be either almost as vast as the former
or much too small. In the first case, the query lacks of precision (i.e., number of
relevant items in the answer divided by total number of items in the answer),
whereas in the second case, the query recall (i.e., number of relevant items in
the answer divided by number of relevant items in the system) is too low.

Godin et al. [GMA93] have shown that Formal Concept Analysis is a good
candidate for reconciliating navigation and querying. We follow this opinion,
but we believe that care must be taken to make formal contexts as close to the
description languages of the end-users, and we have proposed Logical Concept
Analysis (LCA) where formal descriptions are logical formulas instead of being
sets of attributes [FRO0Ob]. So doing, one may consider that the contents of an
information system is a formal context in which items are associated to formulas
that describe them in a user-oriented way. We call this a Logical Information
System (LIS). Then, Concept Analysis automatically organizes the contents of
the information system as a lattice of concepts.

Our goal in this article is to show how a form of navigation and querying can
be defined, so that a user who knows neither the contents of a Logical Information
System, nor the logic of its descriptions, can navigate in it and discover the parts
of the contents and the parts of the logic that are relevant to his quest. Note
that a more expert user may know better and may navigate more directly to
his goal, but since almost everybody has his Terra Incognita, the no-knowledge
assumption is the safest one to do.

We will present in the sequel formal means for navigating in a Logical In-
formation System in order to find relevant objects (answers in the extensional
language), and relevant properties of the formal context (answers in the inten-
sional language). We will show how this latter point is related to data-mining,
knowledge-engineering, and machine-learning. The core of the formal means used
in this work is (Logical) Concept Analysis.

The article is organized as follows. Section 2 presents a guided tour of Logical
Concept Analysis. Section 3 presents the notion of Logical Information System.
Sections 4 and 5 present the details of the navigation in a LIS, and of the
extraction of properties. Sections 6 and 7 present conclusions and perspectives.

2 Logical Concept Analysis

We recall the main definitions and results about Logical Concept Analy-
sis (LCA). More explanations and results can be found in [FROODb].

Definition 1 (context) A logical formal context is a triple (O, L, i) where:
— O is_a finite set of objects,
— (L;E) is a lattice of formulas, whose supremum is V, and whose infimum
is A; L denotes a logic whose deduction relation is |.:, and whose disjunctive
and conjunctive operations are respectively V and A,



— ¢ 4s a mapping from O to L that associates to each object a formula that
describes it.

Given a formal context K, one can form a Galois connection between sets of
objects (extents) and formulas (intents) with two applications ¢ and 7.
Definition 2 Let K = (O, L, 1) be a logical context,

o :P(O) = L, 05(0) =V ,c0il0)

K £ P(O), TK(f) = {o € Olio)f=1}
Formal concepts can be derived from logical contexts.
Definition 3 (concept) In a context K = (O,L,i), a concept is a pair
c= (0, f) where O C O, and f € L, such that o (0)=f and 75(f) = O.
The set of objects O is the concept extent (ext(c)), whereas formula f is its
intent (int(c)).
The set of all concepts that can be built in a context K is denoted by C(K), and
is partially ordered by <¢ defined as follows.
Definition 4 (01, /1) <° (02, f2) 1= 01 C 02 (&= fil=fa)

Definitions 3 and 4 lead to the following fundamental theorem.

Theorem 1 Let K = (O, L,i) be a context. The ordered set (C(K);<°) is a
finite lattice with supremum V¢ and infimum A°.

It is possible to label concept lattices with formulas (resp. objects) through a
labelling map g (resp. 7).

Definition 5 Let K be a logical context,

P L= CK), p"(f) = (r5(f), 0" (17(f)))

10 = C(K), 7¥(0) = (r% (0" ({o})), 0" ({0})) = (7% (i(0)),i(0))
We introduce a contextualized deduction relation as a generalization of the im-

plications between attributes that are used in FCA for knowledge acquisition
processes [GW99,5ne98].

Definition 6 (contextualized deduction) Let K = (O, L,i) be a context,
and f,g € L. One says that f contextually entails g in context K, which is noted

K
fE= g, iff TE(f) C 75 (g), i.e., iff every object that satisfies f also satisfies g.

Relation |.:K is a preorder, whose associated equivalence relation is noted =K,
Formulas ordered by this deduction relation form a new logic adapted to the
context: the contextualized logic. It is connected to the concept lattice by the
following theorem.

K
Theorem 2 (L/-x;F ) and (C(K); <) are isomorphic, with u* as an iso-
morphism from formulas to concepts.

In summary, there are 3 ways of considering a concept lattice: (1) extents or-
dered by set inclusion (7(c(P(0))), C), (2) intents ordered by logical deduction

(o(1(L)), =), (3) formulas ordered by contextualized deduction (£, I:K)



3 A Logical Information System

A Logical Information System (LIS) is essentially a logical formal context (see
Definition 1) equipped with navigation and management tools. In this article, we
are mostly interested in the end-user perspective. So, we will insist on navigation
tools, and will only briefly allude to the management of a logical formal context.

For illustration purpose, we will present a bibliographical reference system
whose principle is the following. Objects are bibliographical references, whose
contents are BibTEX entries, and descriptions are composed of titles, lists of
authors, etc, extracted from the contents, and appreciations (e.g., “theoreti-
cal” or “practical”) and status (e.g., “read”) given by a user. Logical formulas
used for descriptions and queries are sets of valued attributes. For instance,
numerical fields can be described in an interval logic, and string fields can be
described in a boolean logic based on the absence/presence of substrings in a
string: e.g., title: Logic & -(Concept|Context)/year: 1990..1995. In an
advanced version of this system, we also introduced regular expressions and
modalities for representing incomplete knowledge.

Our LIS needs an end-user interface. We will use a shell-based interface,
though this is not the most modern thing to do. This is because we believe
that shell interfaces (like in UNIX or MS-DOS) are familiar to many of us,
and because this abstraction level exposes properly the dialogue of queries and
answers. A higher-level interface like a graphical one would hide it, whereas
lower-level interfaces, like a file system, would expose irrelevant details.

A prototype of the bibliographical system has been built for experimentation
purpose. It has been implemented in Prolog as a generic system in which a
theorem-prover and a syntax analyzer can be plugged-in for every logic used
in descriptions. It is not meant to be efficient, though it can handle several
hundred entries. Contrary to other tools based on concept analysis, it does not
create the concept lattice. It only manages a Hasse diagram of the formulas used
so far [FR00a]. In our experiments with the logic presented above, this diagram
has an average of 5 nodes per object, 3 arcs per node, and a height of about 5.

3.1 Building a Logical Context

The first task one needs to do in a LIS is to build a Logical Context K = (O, L, 1);
this amounts to create and logically describe objects. To each object o is as-
sociated a content c(o) (here, the BibTgX reference) and a logical descrip-
tion i(0). We distinguish content and description in order to hide some BibTEX
fields (e.g., publisher) and add some non-BibTEX fields (e.g., status). We
give an example of an object by displaying its content and its description in
the following table. A “minus” sign before string formulas represents nega-
tion, and the “less” and “greater” signs around strings denote an “all I
know” modality that means that the strings are closed (they do not con-

tain anything else): e.g., title: <"logic"> |= title: - "context" whereas

title: "logic" K title: - "context".



c(o) = @InProceedings{FerRid2000b,
author = {Sébastien Ferré and Olivier Ridoux},
title = {A Logical Generalization of Formal Concept Analysis},
booktitle = {International Conference on Conceptual Structures},
editor = Guy Mineau and Bernhard Ganter,
series = LNCS 1867,
publisher = Springer,
year = {2000},
keywords = {concept analysis, logic, context, information system} }
i(o) =
type: <"InProceedings">/
author: <"Sébastien Ferré and Olivier Ridoux">/
title: <"A Logical Generalization of Formal Concept Analysis">/
year: 2000/
keywords: <"concept analysis, logic, context, information system">/
status: "read"

For all examples given in the following sections, we consider as context K all
ICCS publications until the year 1999, which consists in 209 objects. For this
context, the Hasse diagram has 954 nodes and 2150 arcs. In the following exper-
iments of this paper, all response times are shorter than 5 seconds.

3.2 Navigating in a Logical Context

Once objects have been logically described and recorded in a logical context K,
one wants to retrieve them. One way to do this is navigating in the context. As
already said, this way of searching is particularly useful in a context where the
logic or the contents are unknown. The aim of navigation is thus to guide the
user from a root place to a target place, which contains the object(s) of interest.
For this, a LIS offers to the user 3 basic operations (the corresponding UNIX-
like command names are placed between parenthesis): (1) to ask to LIS what is
the current place (command pwd), (2) to go in a certain “place” (command cd),
(3) to ask to LIS ways towards other “places” (command 1s).

In a hierarchical file system, a “place” is a directory. But in our case, a
“place” is a concept, which can be seen as a coherent set of objects (extent)
and properties (intent) (cf. Definition 3). In large contexts, concepts cannot be
referred to by enunciating either their extent or their intent, because both are
generally too large. Formulas of the logic £ can play this role because every
formula refers to a concept through the labelling map g (cf. Definition 5), and
every concept is referred to by one or several formulas, which are often simpler
than the intent.

We now describe the 3 navigation operations listed above. First of all, going
from place to place implies to remember the current place, which corresponds
to the working directory. In our LIS, we introduce the working query, wq, and
the working concept, we := p (wq); we say that wq refers to we. This working
query is taken into account in the interpretation of most of LIS commands, and
is initialized to the formula T, which refers to the concept whose extent is the
set of all objects. Command pwd displays the working query to the user.

Command cd takes as argument a query formula ¢ saying in which place to
go, and it changes the working query accordingly. We call 1,4 (elaboration of
wq) the mapping that associates to the query ¢ a new working query according



to the current working query wgq. The query g can be seen as a link between
the current and the new working query. Usually, cd is used to refine the working
concept, i.e., to select a subset of its extent. In this case, the mapping l,, is
defined by l,,,(q) := wgAg, which is equivalently characterized by
15 (Lug(9)) =¢ we A° p (q) and 75 (Luqg(q)) = 75 (wg) N 75 (q).

However, it is useful to allow other interpretations of the query argument. For
instance, we can allow the distinction between relative and absolute query, simi-
larly to relative and absolute paths in file systems. The previous definition of the
mapping l,,, concerns relative queries, but can be extended to handle absolute
queries by l,,4(/q) := ¢, where ’/’” denotes the absolute interpretation of queries.
This allows to forget the working query. We can also imagine less usual inter-
pretations of queries like 1,,4(| ¢) := wqVq. Finally, the special argument . . for
the command cd enables to go back in the history of visited queries/concepts.
This works much like the “Back” button in Web browsers.

Command 1s is intended to guide the user towards his goal. More precisely, it
must suggest some relevant links that could act as queries for the command cd to
refine the working query. These links are formulas of £. A set of links given by 1s
should be finite, of course (whereas £ is usually infinite), even small if possible,
and complete for navigation (i.e., each object of the context must be accessible
by navigating). We postpone the development of this issue to Section 4.

As navigation aims at finding objects, command 1s must not only suggest
some links to other places, but also present the object belonging to the current
place, called the object of wq or the local object. It is defined as the object
labelling the working concept through the labelling map 7 (cf. Definition 5).
Formally, the object of a query ¢ is defined by

tK(q) := 0 € O such that yv% (o) =¢ u¥(q).

There can be no local object, and there cannot be several ones because this
would be equivalent to have two different objects described by exactly the same
formula, which would make them undistinguishable. Another interesting thing to
notice is that the working query can be, and is often, much shorter than the whole
description of the local object (which is also the intent of the working concept),
as in the following example where the formula on the first line is contextually
equivalent to the description on the four other lines for accessing the object.

i(t(author: Mineau & Missaoui)) =
type: <InProceedings>/
title: <"The Representation of Semantic Constraints in Conceptual Graph Systems">/
author: <"Guy W. Mineau and Rokia Missaoui'>/
year: 1997

3.3 Updating and Querying a Logical Context

Updating is done via shell commands like mv or cp. With option -r, every object
of the working concept is concerned, while in the opposite case, only the local
object is (considering it exists, cf. Section 3.2).

(1) cd /author: Mineau & Missaoui

(2) mv . status: "to be read"

(3) cd /keywords: FCA | GC

(4) mv -r status: "to be read" status: "read"




Contents can also be changed with a LIS-command chfile. This changes
indirectly descriptions, but the ensuing reorganization of the formal concept
lattice is automatic and transparent. In fact, it costs not so much since the
concept lattice is not actually represented.

Extensional queries can be submitted to a logical information system us-
ing the -r option with command 1s. The answer to query 1s -r q is simply
78 (lwe(q)), i-e., the extent of the concept refered to by l,,(g) (cf. Section 3.2).

(1) 1s -r /title: Logic & -(Concept | Context)/year: 1990..1995

3 B. R. Gaines. "Representation, discourse, logic and truth: situating knowledge technology".
INPROC, 1993.

2 J. F. Sowa. "Relating diagrams to logic". INPROC, 1993.

72 H. van den Berg. "Existential Graphs and Dynamic Predicate Logic". INPROC, 1995.

3 object(s)

4 Searching for Objects

We now define more precisely than in Section 3.2 the dialogue between a user
and our LIS through commands cd and 1s. Let us recall that cd enables the user
to traverse a link from the working concept to another one, and that 1s enables
him to get from LIS a set of relevant links to refine the working concept.

Navigation Links. The following notion of refinement corresponds to the case
where the elaboration mapping satisfies l,,4(¢) = wgAq. To avoid to go in the
concept L ¢ whose extent is empty, we must impose the following condition on
a link z: 75 (wgAz) # 0. As L is a too wide search space, we consider a finite
subset X of £ in which links are selected. The content of X is not strictly
determined but it should contain simple formulas, some frequently used formulas,
and more generally, all formulas that users expect to see in 1s answers. X can
be finite because terminology and used formulas are (because the context is
finite). Furthermore, we keep only greatest links (in the deduction order) as
they correspond to smallest refinement steps. We can now define the set of links
of a working query wq by Link® (wq) := [{z € X|m¥(wgAz) # 0}], where [E]
denotes the set of greatest elements of E according to the order |:

Increments vs. Views. We can distinguish two kinds of links: increments
that strictly restrict the working concept (i.e., 7% (wgAz) # 7% (wq)), and
views that are properties shared by all the objects of the working concept (i.e.,
T8 (wgAz) = 78 (wq)). Only increments are useful as arguments of cd, because
the application of cd to a view would not change the working concept.

Why not use only increments if views are not useful for refinement? Because
sets of increments appear to be too large and heterogeneous: in the BibTEX
example, they mix author names, title words, years, etc. Sets of links are smaller
because many increments are subsumed by views, and then are not returned as
links. For instance, the view (author: x) is returned as a summary of a large set
of author name increments. So, if views are not useful for selecting objects, they
are useful for selecting increments. We introduce a working view wv, similar to



the working query, under which links must be searched for. For instance, if the
working view is (author: #), links will be author name increments. We modify
the definition of Link to take this into account.

Definition 7 Link®X (wq,wv) := [{z € X |zFwv, wolfz, 75 (wgAz) £ 0}].

Definition 8 The completeness of Link is formally expressed by
Ywq € L : Vo € T8 (wq) : 0 # t¥(wq) = Iz € Link® (wgq,wv) : 0 € T8 (wqAz).

In English, this means that for all working query wq and for all object o of its
extent, if o is not yet the local object then it exists a link that enables to restrict
the working extent while keeping o in it.

Theorem 3 Link®X (wq, wv) is complete for all wq and for all wv being a view
for wq iff every object description belongs to X .

In fact, X acts as the vocabulary that LIS uses in its answers. In our prototype,
X is in a large part automatically generated from the context (i.e., from ob-
ject descriptions) every time an object is created (command mkfile) or updated
(commands chfile and mv); and from queries in order to incorporate the user vo-
cabulary in the LIS one. This automatic generation guarantees the completeness
of the navigation according to the above condition, while favouring small links
such as author names, title words, keywords (in fact, whole object descriptions
very rarely appear as links, cf. Table 1). Furthermore, the user can adjust the
LIS vocabulary by adding and removing formulas in X with commands mkdir
and rmdir.

To summarize, the view-based variant of command 1s takes as argument a
view v, sets the working view to l,,, (v) (where l,,, works similarly to l,,4), shows
the local object if it exists, displays each link z of the set Link® (wq,wv) along
with the size of its selected extent 7% (wqAz), and finally displays the size of
the working extent 7% (wq). Increments and views are distinguished according
to their cardinality compared to the working size; views simply have the same
size as the working concept, whereas increments have strictly smaller sizes.

User/LIS Dialogue. We now show how commands cd and 1s compose a rather
natural dialogue between the user and LIS. The user can refine the working
concept with command c¢d, and asks for suggested links with the command 1s.
LIS displays to the user relevant increments for forthcoming cd’s, and relevant
views for forthcoming 1s’s. Commands cd (resp. increments) are assertions from
the user (resp. from LIS): “I want this kind of object!” (resp. “I have this kind
of object!”). Commands 1s (resp. views) are questions from the user (resp. from
LIS): “What kind of object do you have?” (resp. “What kind of object do you
want?”). It should also be noticed that both the user and LIS can answer to
questions both by assertions and by questions.

A complete example of a dialogue is given in Table 1. The left part of this
table shows what is really displayed by our prototype, and the right part is
an English translation of the dialogue. Notice that this translation is rather



systematic and could thus be made automatic. (n) is the prompt for the n-th
query from the user. On the 2nd query, the question of the user is so open, that
LIS only answers by questions. On the 3rd query, the user replies to one of these
questions (title: *) by an assertion; but on the 4th query, he sends back to
LIS another of these questions (author: *) to get some relevant suggestions.
On the 5th query, he just selects a suggested author, "Wille", and then gets his
co-authors on Concept Analysis with the 6th query. On the 7th query, he selects
a co-author and finally finds an object at the 8th query.

(1) pwd (1) What is currently selected?
/ A1l objects.
(2) 1s (2) What do you have?
209 type: * What kind of type do you want?
209 author: * What kind of author do you want?
209 year: .. What kind of year do you want?
209 title: * What kind of title do you want?
209 object(s) 209 objects are currently selected.
(3) cd title: "Concept Analysis"|(3) I want objects whose title contains "Concept Analysis"!
(4) 1s author: * (4) What kind of author do you have (for this)?
1 author: "Mineau" I have 1 object with author "Mineau"!
1 author: "Lehmann" I have 1 object with author "Lehmann"!
1 author: "Stumme" I have 1 object with author "Stumme"!
1 author: "Prediger" I have 1 object with author "Prediger"!
3 author: "Wille" I have 3 objects with author "Wille"!
4 object(s) 4 objects are currently selected.

(5) cd author: Wille (5) I want objects with author "Wille"!
(6) 1s (6) What kind of author do you have (yet)?
1 author: "Mineau" I have 1 object with author "Mineau"!

1 author: "Lehmann" I have 1 object with author "Lehmann"!
1 author: "Stumme" I have 1 object with author "Stumme"!
3 author: "Wille" What kind of author "Wille" do you want?
3 object(s) 3 objects are currently selected.
(7) cd author: Mineau (7) I want objects with author "Mineau"!
(8) 1s (8) What do you have?

200 Guy W. Mineau and Gerd Stumme and Rudolf Wille.
"Conceptual Structures Represented by Conceptual Graphs
and Formal Concept Analysis". INPROCEEDINGS, 1999.

1 object(s) 1 object is currently selected.

(9) pwd (9) What is currently selected?
author: "Wille" & "Mineau"/ Objects with authors "Wille" and "Mineau",
title: "Concept Analysis" and whose title contains "Concept Analysis".

Tablel. Example of User/LIS Dialogue in the BibTEX context.

Related Work. We finish this section by comparing our LIS navigation with
other kinds of navigation based on Concept Analysis. Lindig [Lin95] designed a
concept-based component retrieval based on sets of significant keywords which
are equivalent to our increments for the logic of attributes underlying FCA.
Godin et al. [GMA93] propose a direct navigation in the lattice of concepts, which
is in fact very similar to Lindig’s approach except that only greatest significant
keywords, according to the contextualized deduction on attributes, are displayed
to the user. They have also notions common to our LIS such as working query, di-
rect query specification, and history of selected queries. Cole and Stumme [CS00]
developed a Conceptual Email Manager (CEM) where the navigation is based
on Conceptual Scales [Pre97,PS99]. These scales are similar to our views in the
sense that they select some attributes acting as increments and displayed, as for



us, with the size of the concept they select. A difference with our LIS is that
these increments are ordered according to concept lattices of scales, but it could
also be done in LIS by a post-treatment on answers of command 1s if we had
a GUIL But the main difference with all of these approaches is that we use an
(almost) arbitrary logic to express properties. This enables us to have automatic
subsumption relations (e.g., (author: Wille & -Mineau) = (author: Wille)
|': (author: #)), and thus some implicit views (e.g., author: *, year: ..).

5 Searching for Properties

In previous sections, Concept Analysis (CA) is used to specify navigation and
querying in a LIS. However, in the past CA has been often applied in domains
such as data-analysis, data mining, and learning.

Data-analysis consists in structuring data in order to help their understand-
ing. These data are often received as tables or relations and structured by par-
titions, hierarchies, or lattices. With CA, formal contexts (binary relations be-
tween objects and attributes) are structured in concept lattices [GW99]. This
is applied for instance in software engineering for configuration analysis [KS94].
Data-mining is used to extract properties from large amount of data. These prop-
erties are association rules verified (exactly or approximately) by the data. This
is analogous to implications between attributes in FCA (cf. p. 79 in [GW99)]), and
to contextualized logic in LCA [FROOb]. Unsupervised learning is similar to data-
analysis in the sense that one tries to discover some properties, and to understand
some data, whereas supervised learning is similar to data-mining as some rules
are searched for between known properties and the property to be learned. For
instance, Kuznetsov applied CA to the learning of a positive/negative property
from positive and negative instances [Kuz99].

The issue of this section is to show whether these features of Knowledge
Discovery (KD) can be incorporated in our LIS, and how. Qur aim is not to
fully implement them in the LIS itself, but to offer primitives that could be
combined for building more sophisticated KD features. First, we show how each
of the three above kinds of KD can be formally expressed with the only notion
of contextualized logic (cf. Section 2).

KD through Contextualized Logic. A context K plays the role of a theory by

extending the deduction relation and enabling new entailments (e.g., birdlzK fly
when every bird flies in the context). All these contextual entailments are gath-
ered with logical entailments to form the contextualized logic, which is thus a
means for extracting some knowledge from the context. Two kinds of knowledge
can be extracted: knowledge about the context by deduction (“Every bird of this
context do fly”), and knowledge about the domain (which the context belongs
to) by induction (“Every bird of the domain may fly”).

Concept lattices produced by data-analysis are isomorphic to contextualized
logics (cf. Theorem 2). Associations rules produced by data-mining or supervised



learning match the contextualized deduction relation, possibly qualified by a

confidence defined by con f(f |¥Kg) = W.

Considering two properties f,g € L, their contextual relation is de-
termined by the sizes of 3 sets of objects 7 (f,g) :=|E(f)\ 7% (9)l,
7K (£,9) = 7K (£) N8 (g)] and 7K (f,g) = |7K () \ 7K (f)|. For instance, f
contextually entails g iff 75 (f,g) = 0, f and g are contextually separated
iff 75(f,9) = 0, or z is an increment of wq (cf. Section 4) iff 7X(z,wq) # 0
and 7X (z,wq) # 0.

Generalizing the LIS navigation to KD. The links of navigation defined in
Section 4 can be defined on such contextual relations w.r.t. the working query,
as it can be seen on the following reformulation of Link:
Link® (wq, wv) =

[{(z, 75 (,wq)) € X x N | ak-wv, woiea, 7 (z,wq) > 0}].
We propose to generalize the search for links of navigation into the search for
some contextual properties Propr.

Definition 9 ProprX (wq,wv) :=
[{(z,label® (z,wq)) € X x Label | zEwv, wvlz, proprk (z,wq)}].

where propr and label are respectively a predicate and an application defined
with 7, 7., and 7,.. The predicate propr specifies which contextual properties are
searched for. The application label associates to each property a value belonging
to Label and indicating to the user the relevance of this property. Properties can
then be ordered according to their label. Now, for each kind of contextual prop-
erty of interest, we can define a new LIS command similar to the command 1s
for searching for this kind of properties in the context. As an illustration, the fol-
lowing paragraph defines two such commands. It is important to notice that sets
of properties displayed by these new commands depends strongly on the working
query. So, they cannot produce an exhaustive knowledge like data-analysis, but
are only useful for discovering some knowledge underlying a context through
a navigation-like process. This human-centered knowledge discovery process is
rather different from the most common approach of data analysis and data-
mining, but has already been advocated [HSWW00,KGLBO0O].

Searching for necessary or sufficient properties. First, we define some
common notions such as support and confidence [HSWWOQ0] of a rule f — g in
a context K:

e (£.9)

K K K -

supp(f ~ g) := 7 (£,) and conf(f > g) i= e T .
We define a necessary property as a property x entailed by the working query wq
with a confidence greater than con f,;,. This leads to the following instantiations
of propr and label in the definition of Nec:

propr& (z,wq) <= conf¥ (wq — x) > con fmin,

label® (x,wq) := conf¥(wq — ) € [0,1].
This results in the new command nec that takes as argument confpin (set




to > 0.0 by default) in addition to a view. This command enables the user
to navigate among properties common to all objects of the working concept,
and so in its intent. In the left part of Table 2, we search for the necessary
properties of articles written by Sowa or Mineau. The 2nd query shows that all
of these articles have fields type, author, year, and title defined. The 3rd
query lists title words with confidence greater than 0.15: “Conceptual Graph”
or “CG” appears in more than half of the considered articles (note that the
formula title: "Conceptual Graph" | "CG" has been added to X manually
with command mkdir, unlike other formulas), which is not very surprising, but
“Formal” and “Context” also appear in more than a quarter of them.

(1) cd /author: Sowa | Mineau (1) cd /title: Knowledge
(2) nec / (2) suf /
1.000 type: * 27 0.129 type: =*
1.000 author: * 27 0.129 author: *
1.000 year: .. 27 0.129 year: ..
1.000 title: =* 27 0.129 title: *
18 object(s) 27 object(s)

(3) nec 0.15 title: * (3) suf 2 0.2 author: *
0.167 title: "Definition" 2 0.286 author: "Ellis"
0.167 title: "Constraints" 2 0.400 author: "Angelova"
0.222 title: "Represent" 2 0.667 author: "Bontcheva"
0.222 title: "Processes" 2 1.000 author: "Gaines"
0.278 title: "Context" 3 0.375 author: "Dick"
0.278 title: "Formal" 3 0.429 author: "Lukose"
0.500 title: "Graph" 3 0.500 author: "Cyre"
0.556 title: "Concept" 4 0.667 author: "Martin"
0.556 title: "Conceptual Graph" | "CG"| 27 object(s)

18 object(s)

Table2. Examples of Knowledge Extraction in the BibTEX context.

We define a sufficient property as a property z that entails the working
query wq with a support greater than suppmin, and with a confidence greater
than con fp,in. This leads to the following instantiations of propr and label in
the definition of Suf:

propri (z,wq) & supp® (z — wq) > suppmin A conf¥(x — wq) > con fin,

label® (x,wq) := (supp® (z — wq),confX(z — wq)) € N x [0,1].

This results in the new command suf that takes as argument supppmin (set to 1
by default) and confmi, (set to > 0.0 by default) in addition to a view. This
command extracts some properties with which the working query property is
always, or at least often, associated. Therefore, it can help to build some decision
procedure for the working property, which is the issue of supervised learning.
In the right part of Table 2, we search for the sufficient properties of articles
whose title contains the word “Knowledge”. The 2nd query just shows these
articles represent 12.9% of the whole context, and serves mainly as a menu of
the available fields. Then, the 3rd query lists author names with support greater
than 2, and confidence greater than 0.2: e.g., Martin has written 4 articles about
“Knowledge”, which consists in 2/3 of his articles, and Gaines has written 2
articles, both talking about knowledge.

Commands nec and suf both enable the search for association rules whose
left or right part is fixed on the working query. In an application built on top



of LIS, they could be combined to find all association rules between two sets of
properties (ex. between authors and title words, in the BibTEX context).

6 Future Work

Our most practical perspective is to design a logical file system, which would
implement the ideas we have presented in this article. The expected advantage
is to offer the services described here at a standard system level that is accessible
for every application. So doing, even applications that do not know about logical
information systems (like e.g., compilers) would benefit from it.

A graphical user-interface to logical file systems would allow to display in an
integrated fashion the working query, the working view, and the corresponding
extent and set of links. For instance, a graphical interface for keeping trace of
navigation, like what is becoming standard for file browsers, has been already
experimented for a simple logic (attributes with values) but should be developed
further. This amounts to keep a trace of the path from the start of the navigation
to the current place. Moreover, the set of links could be presented graphically as
a diagram of ordered formulas. A further refinement is to take into account the
contextualized deduction, to get something similar to concept lattices derived
from scales [CS00]. This amounts to represent an overview of possible future
navigations.

The Web can also be explored using our techniques if one considers answers
to web-queries as a formal context into which to navigate.

There is also a connection with natural language that we wish to explore
further (see Section 4). We believe that a logical information system can provide
the rational for a human-machine interface in natural language, in which both the
human being and the machine could submit assertions and queries. In this case,
logics that have been widely used for representing natural language semantics
seem to be the right choice. One such logic is the deduction relation of Conceptual
Graphs [Sow84,Sow99].

7 Conclusion

We have presented the specifications of a Logical Information System based on
(Logical) Concept Analysis. As opposed to previous attempt of using Concept
Analysis for organizing data, we do not propose to navigate directly in the con-
cept lattice. Instead, we use the contextualized logic (i.e., the logical view of the
concept lattice) to evaluate the relevance of navigation links. Those that do not
narrow the focus of the search are called views. They only restrict the language
of available navigation links. Other links, that do narrow the focus of the search,
are called increments. They can be used to come closer to some place of interest.

In this way, standard commands of a file system shell can be mimicked in
a logical context. However, a simple generalization of the definition of links
forms a framework in which operations of data-analysis or data-mining can be



expressed. Using this framework, purely symbolic navigation as well as statistical
exploration can be integrated smoothly as variants of the same generic operation.
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