i ⊨ f =def | ⎧ ⎨ ⎩ |
|
f ⊑ g =def | ⎧ ⎨ ⎩ |
|
f ⊓ g =def | ⎧ ⎨ ⎩ |
|
f ⊔ g =def | ⎧ ⎨ ⎩ |
|
i ≤ j =def ∨ | ⎧ ⎨ ⎩ |
|
f ≤ g =def ∨ | ⎧ ⎪ ⎨ ⎪ ⎩ |
|
f ⋜ g =def ∨ | ⎧ ⎪ ⎨ ⎪ ⎩ |
|
|
⊤ -Axiom: ¬ b, Δ ⊢ Γ if def⊤A and ⊤A ⊑A b ⊥-Axiom: a, Δ ⊢ Γ if def⊥A and a ⊑A ⊥A ⊑-Axiom: a, ¬ b, Δ ⊢ Γ if a ⊑A b ⊓ -Rule:
a ⊓A b, Δ ⊢ Γ
a, b, Δ ⊢ Γ if def⊓(a,b) ⊔ -Rule:
¬(a ⊔A b), Δ ⊢ Γ
¬ a, ¬ b, Δ ⊢ Γ ¬ ¬ -Rule:
Δ ⊢ X, Γ
Δ ⊢ ¬ ¬ X, Γ
literal-Rule:
L , Δ ⊢ Γ
Δ ⊢ L, Γ β -Rule:
Δ ⊢ β1, …, βn, Γ
Δ ⊢ β, Γ
α -Rule:
Δ ⊢ α1, Γ … Δ ⊢ αn, Γ
Δ ⊢ α, Γ
Table D.1: Sequent calculus for deduction in propositional logic.